WEIGHTED ORLICZ SPACE INTEGRAL INEQUALITIES FOR POTENTIAL MAXIMAL OPERATORS

  • Kim, Yong-Mal (Department of Mathematics Education Kyngpook National University) ;
  • Yoo, Yoon-Jae (Department of Mathematics Education Kyngpook National University)
  • Published : 2000.07.01

Abstract

We characterize a condition for M to be of weak type ($\Phi$1, $\Phi$2) in terms of Orlicz norms.

Keywords

maximal operator;Orlicz norm

References

  1. Amer. J. Math. v.93 Some maximal inequalities C. Fefferman;E. M. Stein
  2. Trans. Amer. Math. Soc. v.191 Weighted norm inequalities for fractional integrals B. Muckenhoupt;R. L.Wheeden
  3. Pacific J. Math. v.117 A unified approach to Carleson measures and Ap weights II F. J. Ruiz;J. L. Torrea
  4. Type Maximal Operators, Indiana University Mathematics Journal v.43 no.2 Two Weighted Inequalities for Potential and Fractional C. P'erez
  5. Ann. Math. v.76 Interpolation by bounded analytic functions and the corona problem L. Carleson
  6. Lecture Notes in Math. v.1034 Orlicz Spaces and Modular Spaces J. Musielak
  7. Publications Matem`atiques v.38 Weighted Norm Inequalities for Maximal Functions from the Muckenhoupt conditions Y. Rakotondratsimba
  8. Pacific J. Math. v.117 A unified to Carleson measures and Ap weights F. Ruiz
  9. Israel J. Math. v.81 Weighted and Lф-boundedness of the Poisson integral operator Jie-Cheng Chen
  10. Studia Math. v.110 Weighted Lф integral inequalities for operators of Hardy type S. Bloom;R. Kerman
  11. Studia Math. v.110 Weighted Orlicz space integral inequalities for the Hardy-Littlewood maximal operator
  12. Weighted Norm Inequalities and Related Topics J. Garcia-Cuerva;J. L. Rubio De Francia
  13. Israel J. Math. v.67 Weighted weak type integral inequality for the Hardy-Littlewood maximal operator D. Gallardo
  14. Far East J. Math. Sci. v.5 no.2 Weighted Orlicz space integral inequalities for fractional maximal operators Yong Mal Kim;Yoon Jae Yoo