VARIATIONAL PRINCIPLE FOR QUANTUM UNBOUNDED SPIN SYSTEMS

  • Choi, S.D. ;
  • Jo, S.G. ;
  • Kim, H.I. ;
  • Lee, H.H. ;
  • Yoo, H.J.
  • Published : 2000.07.01

Abstract

We study the variational principle for quantum unbounded spin systems interacting via superstable and regular interactions. We show that the (weak) KMS state constructed via the thermodynamic limit of finite volume Green's functions satisfies the Gibbs variational equality.

Keywords

Quantum unbounded spin systems;superstable interaction;KMS states;entropy;pressure;Gibbs variational principle

References

  1. Operator algebras and quantum statistical mechanics v.1 O. Bratteli;D. W. Robinson
  2. de Gruyter Gibbs measures and phase transitions H. O. Georgii
  3. Operator algebras and quantum statistical mechanics v.2
  4. The statistical mechanics of lattice gases v.1
  5. Commun. Math. Phys. v.50 Statistical mechanics of systems of unbounded spins J. L. Lebowitz;E. Presutti
  6. J. Stat. Phys. v.75 no.1;2 A characterization of Gibbs states of lattice boson systems Y. M. Park and H. J. Yoo,
  7. J. Korean Math. Soc. v.22 no.1 Quantum statistical mechanics of unbounded continuous spin systems Y. M. Park
  8. Random field Lecture Notes in Mathematics C. Preston
  9. Functional integration and quantum physics B. Simon
  10. J. Funct. Anal. v.19 Homogeneous random fields and statistical mechanics S. Albeverio;R. Hegh-Krohn
  11. Convexity in the theory of lattice gases R. B. Israel
  12. Rigorous results Statistical mechanics D. Ruelle
  13. Commun. Math. Phys. v.50 Probability estimates for continuous spin systems
  14. Z. Wahrscheinlichkeitstheorie verw. Gebiete v.58 Almost sure entropy and the variational principle for random elds H. Kunsch