골격성 III급 부정교합에서 수직적 안모형태에 따른
혀와 설골의 위치 비교

우 광수1)・윤 정현2)・김 상철3)

혀와 설골의 위치가 안모형태와 어떤 영향을 미치는지 비교평가하기 위해 63명의 성인군과 63명의 성장군에서 두부방사선촬영사진을 얻었다.

성인군과 성장군에서 SN 평면에 대해 큰 하약평면각을 갖는 군과 작은 하약평면각을 갖는 군으로 구분하여 다음과 같은 결과를 얻었다.

1. 혀의 높이는 큰 하약평면각을 갖는 군보다는 작은 하약평면각을 갖는 군에서, 성인군보다는 성장군에서 높게 나타났다.
2. 설골의 수직적 높이는 큰 하약평면각을 갖는 군보다는 작은 하약평면각을 갖는 군에서, 성인군보다는 성장군에서 높게 나타났다.
3. 덮개와 안모형태의 수직적 분류에 따른 설골의 전후방적인 위치는 차이가 없었다.
4. 두개지에 대한 설골의 기울기에 있어, 성인군보다 성장군에서 좀 더 가파른 경사도를 갖고 있었다.

(주요단어: 혀, 설골, 수직적안모형태)

I. 서 론

성장기 아동의 악골성장 및 발육은 대부분이 유전적 요인을 통해 조절되나 악골주위의 근육을 통한 구강악계의 생리적 기능을 통해서도 영향을 받을 수 있 다. 따라서 악골 주위 연조직의 비정상적인 발육은 악골의 발달에 부적절한 영향을 미치게되므로 성장기 아동에서 구강주위의 비정상적인 생리적 현상을 평가하는 것은 정확한 부정교합의 양상을 규정하는 데 중요한 요소가 될 것이다.

구강악계의 생리적 기능을 구성하는 요소 중, 혀와 설골의 위치와 기능에 따른 두개악면의 골격 구조에 미치는 영향에 대해서 많은 연구가 진행되어 왔다. Fishman4)에 의하면 혀는 인체의 근육 중에서 가장 다양한 운동성을 가지고 구강악계의 형태로 지대한 영향을 미치므로 비정상적인 위치와 기능은 부정교합 발생과 발음문제의 야기시킬 수 있는 요소로 된다고 하였다.

허와 클리교소의 관련성에 대해 Lowe5)는 수직적인 면교경이 떨어지 경우에는 교합면의 하방에 설침부가 위치하고 클리교소의 개방교합의 경우에는 설침부가 하악절치의 전방에 위치한다고 보고하여 혀의 위치가 클리교소와 상관관계가 있을음을 시사하였다.

Cuozzo6)는 인하시 혀의 부적절한 위치로 인해 치아의 위치가 변화한다고 하였으며, Brodie7)는 혀의 저 위치가 하악골을 확장시키고 상악골의 협착의 원인이 된다고 하였다. 따라서 혀의 위치와 크기, 모양 등을 치아의 위치, 치밀구 형상에 중요한 요소로 작용한다.
Table 1. Number and mean age of subjects.

<table>
<thead>
<tr>
<th></th>
<th>Child</th>
<th></th>
<th>Adult</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>Hypodivergent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>number</td>
<td>23</td>
<td>11</td>
<td>11</td>
<td>25</td>
</tr>
<tr>
<td>mean age</td>
<td>11Y 8M</td>
<td></td>
<td>23Y 3M</td>
<td></td>
</tr>
<tr>
<td>Hyperdivergent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean age</td>
<td>10</td>
<td>19</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>11Y 6M</td>
<td></td>
<td>22Y 9M</td>
<td></td>
</tr>
</tbody>
</table>

학과 치과의 현상에 의해 서로 연결되어 있어 식별과 혈의 위치는 밀접한 관계가 있으며, 혈의 위치와 기능을 평가하는 시로 식별과 하약골 위치간의 관계가 중요하고 있다.

식별의 위치는 근육, 인대, 부착근막 등의 신장에 영향을 주어 교정적, 수술적 계획에 중요하게 작용하게 될 수 있으므로 정상적인 생리적 위치와 기능을 평가하는 것이 필요하다. 교정치료에 따른 식별의 위치 변화는 기능적으로 많은 의미를 갖는다.

두개인대형태와 혈과 식별의 위치, 기능의 상관성에 대한 연구는 많이 진행되어 왔으나, 대부분이 골격의 전후방적 관계만을 기준으로 연구가 진행되어 왔으며 수적적 요소와의 관상성여부는 논의되지 않았다.

따라서 본 연구에서는 동량안에 많이 분포하는 골격성 III급 부정교합자에서 수적적 안도형태에 따른 혈과 식별의 위치변화를 조사하여 다소의 지점을 얻었기에 보고하는 바이다.

II. 연구 대상 및 방법

1. 연구 대상

원광대학교 치과병원 교정과에서 골격성 III급 부정교합으로 진단 받은 132명(ANB 각각 0°이하이며 APDI 수치가 90이상인 환자)을 대상으로 하였다.

혈의 상장가 완성되는 18세를 기준으로 하며, 성인군(18세 이상) 69명, 성장군(18세 이하) 63명으로 나누었으며, SN 평면에 대한 하악평면각에 따라, 큰 하악평면각을 갖는 군(hyperdivergent group)과 작은 하악평면각을 갖는 군(hypodivergent group)으로 구분하였다 (Table 1).

Fig 1. Landmarks in measurements of the position of tongue and hyoid bone.

2. 연구 방법

각 대상에서 총두부방사선 골격사진을 촬영하였고, 투사도를 작성하여 혈과 식별의 위치를 나타낼 수 있는 값 및 각도량을 설정하여 계측하였다. 본 연구에서 사용한 계측항목은 다음과 같으며 길이와 각도 계측은 0.5mm와 0.5° 수준에서 각각 측정하였다.

가) 계측점 (Fig. 1)

S : sella turcica의 중앙점
N : 전비봉합의 최진방점
Or : 안와의 최하방점
Fig 2. Linear measurements of the position of tongue and hyoid bone.

Fig 3. Angular measurements of the position of tongue and hyoid bone.

2) 설골에 관한 계측항목
4. S-APH : sella turcica의 중심에서 설골의 최전방점까지의 수직거리
5. Pog-APH : pogonion으로부터 설골의 최전방점까지의 수평거리
6. N-APH : nasion으로부터 설골의 최전방점까지의 수평거리
7. APH-MP : 설골의 최전방점에서 하악뼈면에 수직으로의 거리
8. FH-PPH : FH plane으로부터 설골의 최후방점까지의 수직거리
9. FH-APH : FH plane으로부터 설골의 최전방점까지의 수직거리
10. GoP-APH : gorion에서 FH plane에 평행하게 그은 선으로부터 설골의 최전방점까지의 수직거리
11. GoP-PPH : gorion에서 FH plane에 평행하게 그은 선으로부터 설골의 최후방점까지의 수직거리
12. LAH-MP : 설골의 장축과 하악골의 하연이 이루는 각
13. LAH-PP : 설골의 장축과 구개평면이 이루는 각
Table 2. The comparisons of the position of tongue and hyoid bone between hypodivergent group and hyperdivergent group in adult.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Hypodivergent (Mean ± S.D.)</th>
<th>Hyperdivergent (Mean ± S.D.)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adult</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN-MP</td>
<td>26.96±3.67</td>
<td>39.38±4.48</td>
<td>NS</td>
</tr>
<tr>
<td>Tongue height</td>
<td>H-P</td>
<td>8.46±3.48</td>
<td>12.39±4.07</td>
</tr>
<tr>
<td></td>
<td>H-H'</td>
<td>19.07±4.19</td>
<td>19.95±4.12</td>
</tr>
<tr>
<td></td>
<td>H-APH</td>
<td>57.94±5.14</td>
<td>57.94±5.63</td>
</tr>
<tr>
<td>Hyoid bone (A-P)</td>
<td>S-APH</td>
<td>20.51±2.75</td>
<td>23.57±9.04</td>
</tr>
<tr>
<td></td>
<td>Po-APH</td>
<td>53.45±5.31</td>
<td>50.93±4.88</td>
</tr>
<tr>
<td></td>
<td>N-APH</td>
<td>47.88±6.37</td>
<td>48.62±7.14</td>
</tr>
<tr>
<td>Hyoid bone (vertical)</td>
<td>APH-MP</td>
<td>8.59±5.84</td>
<td>11.13±4.89</td>
</tr>
<tr>
<td></td>
<td>FH-PH</td>
<td>73.62±6.69</td>
<td>85.03±9.37</td>
</tr>
<tr>
<td></td>
<td>FH-APH</td>
<td>90.52±8.54</td>
<td>95.08±8.41</td>
</tr>
<tr>
<td></td>
<td>GoP-APH</td>
<td>22.43±5.23</td>
<td>29.61±6.27</td>
</tr>
<tr>
<td></td>
<td>GoP-PPH</td>
<td>12.19±8.22</td>
<td>19.54±8.43</td>
</tr>
<tr>
<td>Hyoid bone (angular)</td>
<td>LAH-MP</td>
<td>-2.35±8.80</td>
<td>-13.79±8.81</td>
</tr>
<tr>
<td></td>
<td>LAH-PP</td>
<td>17.47±8.94</td>
<td>15.76±10.00</td>
</tr>
<tr>
<td></td>
<td>LAH-FH</td>
<td>16.84±8.79</td>
<td>15.68±10.44</td>
</tr>
<tr>
<td></td>
<td>LAH-PBR</td>
<td>111.64±9.97</td>
<td>113.86±11.34</td>
</tr>
</tbody>
</table>

NS : not significant, * : p < 0.05, ** : p < 0.01, *** : p < 0.001

14 LAH-FH : 설골의 장축과 FH plane이 이루는 각
15. LAH-PBR : 설골의 장축과 하악지의 후연이 이루는 각

III. 연구성적

1. 성인군에서 작은 하악평행만을 갖는 군이 큰 하악평행만을 갖는 군과의 비교 (Table 2)

혀의 수직적 높이(H-P)는 작은 하악평행만을 갖는 군이 큰 하악평행만을 갖는 군보다 더 높은 위치를 보였다(p<0.001).

설골의 전후방적 위치는 작은 하악평행만을 갖는 군과 큰 하악평행만을 갖는 군간에 Po-APH이외에는 유의한 차이를 보이지 않았고, 수직적 높이에서는 FH-PHP, FH-APH, GoP-APH, GoP-PHP 등에서 큰 하악평행만을 갖는 군에서 유의하게 하방에 위치하였다. 또한 하악하연과 설골과의 거리(APH-MP)
Table 3. The comparisons of the position of tongue and hyoid bone between hypodivergent group and hyperdivergent group in child.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Child</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hypodivergent (Mean ± S.D.)</td>
<td>Hyperdivergent (Mean ± S.D.)</td>
<td>p-value</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN-MP</td>
<td>28.55±3.47</td>
<td>39.92±3.50</td>
<td></td>
</tr>
<tr>
<td>Tongue height</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-P</td>
<td>6.66±3.41</td>
<td>9.66±3.89</td>
<td>**</td>
</tr>
<tr>
<td>H-H</td>
<td>18.95±4.15</td>
<td>18.62±3.43</td>
<td>NS</td>
</tr>
<tr>
<td>H-APH</td>
<td>54.79±5.64</td>
<td>54.37±5.42</td>
<td>NS</td>
</tr>
<tr>
<td>Hyoid bone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A-P)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-APH</td>
<td>21.34±7.52</td>
<td>16.40±6.36</td>
<td>**</td>
</tr>
<tr>
<td>Po-APH</td>
<td>48.70±6.87</td>
<td>47.66±6.93</td>
<td>**</td>
</tr>
<tr>
<td>N-APH</td>
<td>48.17±6.93</td>
<td>50.25±6.78</td>
<td>NS</td>
</tr>
<tr>
<td>Hyoid bone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(vertical)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APH-MP</td>
<td>9.08±4.76</td>
<td>13.62±4.42</td>
<td>NS</td>
</tr>
<tr>
<td>FH-PHP</td>
<td>68.97±6.70</td>
<td>72.48±7.55</td>
<td>NS</td>
</tr>
<tr>
<td>FH-APH</td>
<td>81.43±6.82</td>
<td>86.02±7.34</td>
<td>*</td>
</tr>
<tr>
<td>GoP-APPH</td>
<td>23.82±4.49</td>
<td>30.77±5.05</td>
<td>***</td>
</tr>
<tr>
<td>GoP-PHP</td>
<td>12.54±3.90</td>
<td>17.48±5.53</td>
<td>***</td>
</tr>
<tr>
<td>Hyoid bone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(angular)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAH-MP</td>
<td>-1.33±7.62</td>
<td>-7.51±6.34</td>
<td>***</td>
</tr>
<tr>
<td>LAH-PP</td>
<td>30.34±7.41</td>
<td>22.00±6.09</td>
<td>NS</td>
</tr>
<tr>
<td>LAH-FH</td>
<td>21.32±6.67</td>
<td>23.47±5.67</td>
<td>NS</td>
</tr>
<tr>
<td>LAH-PBR</td>
<td>117.84±8.70</td>
<td>123.90±6.51</td>
<td>**</td>
</tr>
</tbody>
</table>

NS : not significant, * : p < 0.05, ** : p < 0.01, *** : p < 0.001

에서 큰 하악평행각을 갖는 군이 더 큰 것으로 나타났다(p<0.01).
두개자에 대한 설골의 가울기에 있어서 차이는 유의하지 않았으나, 하악하연(LAH-MP)이 작은 하악평행각을 갖는 군에서 유의하게 가파른 각도의 설골 가울기를 보였다(p<0.001).

2. 성장군에서 작은 하악평행각과 큰 하악평행각을 갖는 군간의 비교 (Table 3)

의 수직적 높이에서 작은 하악평행각을 갖는 군이 보다 높은 위치를 나타내고(p<0.01), 설골의 전후방적 위치는 군간의 유의한 차이 보이지 않았으며 하악하연과의 거리인 큰 하악평행각을 갖는 군에서 보다 큰 것을 볼 수 있었다. 또한 수직적인 높이에서는 큰 하악평행각을 갖는 군에서 두개자에 대해 좀 더 낮은 위치를 보였다(p<0.05).
설골의 가울기에서는 두개자에 대해 유의한 차이가 발견되지 않았으나 하악하연에 대해서는 작은 하악평행각을 갖는 군에서 보다 가파른 각도를 보였다(p<0.001).

3. 작은 하악평행각을 갖는 군에서 성인군과 성장군 간의 비교 (Table 4)

의 수직적 높이에서 성인군이 성장군에 비해 유의하게 낮게 나타났고(p<0.01), 설골의 전후방적 위치는 거의 유의한 차가 없는 것으로 보였다. 수직적
Table 4. The comparisons of the position of tongue and hyoid bone between adult and child in hypodivergent group.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Adult (Mean ± S.D.)</th>
<th>Child (Mean ± S.D.)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN-MP</td>
<td>36.96±3.67</td>
<td>28.55±3.47</td>
<td></td>
</tr>
<tr>
<td>Tongue height</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-P</td>
<td>8.46±3.48</td>
<td>6.65±3.41</td>
<td>**</td>
</tr>
<tr>
<td>H-H'</td>
<td>19.07±4.19</td>
<td>18.95±4.15</td>
<td>NS</td>
</tr>
<tr>
<td>H-APH</td>
<td>57.94±5.14</td>
<td>54.79±6.64</td>
<td>*</td>
</tr>
<tr>
<td>Hyoid bone (A-P)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-APH</td>
<td>20.51±7.25</td>
<td>21.34±7.52</td>
<td>NS</td>
</tr>
<tr>
<td>Po-APH</td>
<td>53.45±5.31</td>
<td>48.70±6.87</td>
<td>NS</td>
</tr>
<tr>
<td>N-APH</td>
<td>47.88±6.37</td>
<td>48.17±6.93</td>
<td>*</td>
</tr>
<tr>
<td>Hyoid bone (vertical)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APH-MP</td>
<td>8.59±5.84</td>
<td>9.08±4.76</td>
<td>NS</td>
</tr>
<tr>
<td>FH-PPH</td>
<td>79.62±8.69</td>
<td>68.97±6.70</td>
<td>***</td>
</tr>
<tr>
<td>FH-APH</td>
<td>90.52±8.84</td>
<td>81.43±6.82</td>
<td>***</td>
</tr>
<tr>
<td>GaP-APH</td>
<td>22.43±5.23</td>
<td>23.82±4.49</td>
<td>NS</td>
</tr>
<tr>
<td>GaP-PPH</td>
<td>12.19±8.22</td>
<td>12.54±3.99</td>
<td>NS</td>
</tr>
<tr>
<td>Hyoid bone (angular)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAH-MP</td>
<td>-2.35±8.80</td>
<td>-1.33±7.62</td>
<td>NS</td>
</tr>
<tr>
<td>LAH-PP</td>
<td>17.47±8.94</td>
<td>20.34±7.42</td>
<td>NS</td>
</tr>
<tr>
<td>LAH-FH</td>
<td>16.84±8.79</td>
<td>21.32±6.66</td>
<td>*</td>
</tr>
<tr>
<td>LAH-PBR</td>
<td>111.64±9.97</td>
<td>117.84±8.70</td>
<td>**</td>
</tr>
</tbody>
</table>

NS : not significant, * : p < 0.05, ** : p < 0.01, *** : p < 0.001

높이의 차이는 FH-PPH, FH-APH 등에서 두개지에 대해 성인군에서 보다 낮은 위치를 나타내었다(p<0.001). 하약하현에 대한 실험의 기울기에서 두개지에 대한 기울기는 성장군에서 보다 가파른 기울기를 보였다 (p<0.05).

4. 하악면각을 갖는 군에서 성인군과 성장군간의 비교 (Table 5)

하의 수직적 높이에서 성인군에서 보다 낮은 위치를 보였고(p<0.01), 실험의 전후방적인 위치에서는 거의 유의한 차이를 보이지 않았고 수직적 높이에서 성인군에서 보다 낮은 위치를 보였으며 두개지에 대한 실험의 기울기는 성장군에서 보다 가파른 기울기를 보였다(p<0.01). 또한 하약하현에 대한 기울기는 성장군에서 가파른 기울기를 보였다(p<0.01).

IV. 종결 및 고찰

하악 전후방의 위치와 기능이 부정교합에 미치는 영향을 고려하면 상당한 관심을 갖게 된다. 이들의 비정상적인 위치와 기능은 부정교합의 발생, 발음문제, 부가적인 치아와 치열의 위치변화 등에 초래하게 된다. 따라서 성장 중에 이에 대한 원인을 파악하는 것이 중요하다.

하의 위치의 연구는 하악 위치와 크기, 두부안면부 골격의 성장양상과 형태에 미치는 영향을 조사하여, 방법적인 면에서 두부계측 방사선사진을 이용할 수 있다.
Table 5. The comparisons of the position of tongue and hyoid bone between adult and child in hyperdivergent group.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Adult (Mean ± S.D.)</th>
<th>Child (Mean ± S.D.)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN-MP</td>
<td>39.38±4.48</td>
<td>39.92±3.51</td>
<td></td>
</tr>
<tr>
<td>Tongue height</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-P</td>
<td>12.39±4.07</td>
<td>9.66±3.89</td>
<td>**</td>
</tr>
<tr>
<td>H-H′</td>
<td>19.95±4.12</td>
<td>18.62±3.43</td>
<td>NS</td>
</tr>
<tr>
<td>H-APH</td>
<td>57.94±5.63</td>
<td>54.37±5.42</td>
<td></td>
</tr>
<tr>
<td>Hyoid bone (A-P)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-APH</td>
<td>23.57±9.04</td>
<td>16.40±6.36</td>
<td>*</td>
</tr>
<tr>
<td>Po-APH</td>
<td>50.93±4.48</td>
<td>47.66±6.93</td>
<td>NS</td>
</tr>
<tr>
<td>N-APH</td>
<td>48.02±7.14</td>
<td>50.25±6.78</td>
<td></td>
</tr>
<tr>
<td>Hyoid bone (vertical)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APH-MP</td>
<td>11.13±4.89</td>
<td>13.62±4.42</td>
<td>NS</td>
</tr>
<tr>
<td>FH-PH</td>
<td>85.03±9.37</td>
<td>72.48±7.55</td>
<td>***</td>
</tr>
<tr>
<td>FH-APH</td>
<td>95.06±8.41</td>
<td>86.02±7.34</td>
<td>***</td>
</tr>
<tr>
<td>GoP-APH</td>
<td>29.61±6.27</td>
<td>30.77±5.05</td>
<td>NS</td>
</tr>
<tr>
<td>GoP-PPH</td>
<td>19.54±8.43</td>
<td>17.48±5.53</td>
<td>NS</td>
</tr>
<tr>
<td>Hyoid bone (angular)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAH-MP</td>
<td>-13.79±8.81</td>
<td>-7.51±6.34</td>
<td>**</td>
</tr>
<tr>
<td>LAH-PP</td>
<td>15.76±10.00</td>
<td>22.00±6.09</td>
<td>**</td>
</tr>
<tr>
<td>LAH-FH</td>
<td>15.68±10.44</td>
<td>23.47±5.67</td>
<td>***</td>
</tr>
<tr>
<td>LAH-PBR</td>
<td>113.86±11.34</td>
<td>123.99±6.51</td>
<td>***</td>
</tr>
</tbody>
</table>

NS : not significant, * : p < 0.05, ** : p < 0.01, *** : p < 0.001

및 전산화 단층촬영 방법, 구강 밖으로 하루 활동이 동 시간 후 혈을 계측하는 방법 등18-20 많은 연구가 진행 되어 왔다.

Peat14의 혈의 위치에 관한 연구에서 연구결과로부터 3mm 이하로 떨어져 있는 경우가 전체의 78.7%를 차 지하고 있으며 경구로로부터 혈의 위치가 낮은수록 연구결과로부터 많이 떨어지게 되고 이런 경우에 구강 을 전체를 폐쇄할 수 없기 때문에 혈은 구조로부터 떨어져 전후방적의 방향으로 위치하게 된다고 하였다.

연령에 따른 연구에서 Peat14는 종단적 연구를 통 해 아동에 비해 성인에서 혈의 위치가 낮다고 하였으 며 이러한 결과와 본 연구에서 나타난 결과와 일치하 여 낮은 하악평면을 갖는군 뿐만 아니라 높은 하악
평면각을 갖는 구인에서도 성장하면서 낮은 허치의 위치를 보완 성장을 할수록 허치의 위치는 하방으로 이동할 수 있었다. 이와 같이 성장에서 보다 낮은 허치의 위치를 갖는 것은 부분적으로는 거짓나조직의 요소와 근육적인 요소의 성장의 차이로 인해 야기될 수 있으 며, 경추의 성장과 연관된 구조와 허치의 하방 위치로 인해 나타난다고 하였다. 본 연구에서는 점도 연령계 추출에서도 안모 형태의 수직적 요소가 강할수록, 두 개구와 하약절대가 크게 허치의 자세가 낮아지는 경향을 보였다. 따라서 수직적인 성장이하가 강할수 롤 허치의 자세가 낮아져 하방 위치현상을 볼 수 있으리라 생각된다.

허치의 위치와 저작성은 성장의 위치와 저작성과 밀접한 관계로 되고 있다. 왜냐하면 두 개의 해부학적 구조사이에는 부착된 근육과 안모 부착물을 통해 정확한 균형을 제공할 채널이 없으나 다가 두개구에 대한 성장과 하약의 위치관계에 대한 연구에서 허치와 저작성의 회로써 특별한 관심의 대상이 되어왔기 때문이다.

성장은 설골상대와 설골하건을 통해서 다른 골들과 연결되어 있고 하약운동성 설골과 설골상건, 하약의 상호작용으로 기도를 유지하게 되며 하약과 후두개, 두개구 사이의 근육의 조절을 제공하게 된다. 설골이 교정치료 전후 같은 위치에 존재한다면 저작성 같은 상태로 균형을 유지하는 것이고 저작성의 힘에 의한 깨발의 기능은 줄일 수 있을 것이다. 만약 설골의 위치가 변한다면 이에 적응하기 위하여 더 오랜 시간동안 유지기간이 필요하다.

성장에 관한 연구를 살펴보면 다양한 인구 표본을 대상으로 설골의 위치변화에 대한 연구를 통해 하약의 위치변화와 밀접한 사관관계를 보여주고, Graber는 두부측에서 대한 설골의 위치는 decephalost에서 두부위치, 경추의 자세, 기능상태 등의 영향에 변화는 설골의 위치변화에 영향을 미친다고 하였으나 이런 안모에 불구하고 정상적인 설골의 위치를 결정할 수 있을 것이라고 주장하였다.

이러한 관점에서 경추에 대한 설골의 재생성의 위치와 두부절대부에 대한 설골의 기능적인 상호관계를 알아내기 위해 여러 연구가 시도되었다. 방사선적 방법에서 경추위치의 최소형의 변화는 두부계측 시점에서 설골의 위치를 변화시킬 수 있다는 사실을 연구자들은 제안하고 있다.

과적의 수평 양상에 따른 위치변화에서 Stepovich(22)는 Angle I, II, III가 부정교합에서 설골의 위치 차이가 없다는 보고하고 있으며, King(24)은 시동기 전후 때까지는 경추에 대해서 설골은 항상 일정하게 위치하고 정체 변방으로 조금씩 이동한다고 하였으며, Kuroda와 Nunoda(25)는 하악과 비교할 때 설골의 위치는 변화가 거의 없으나 두개구에 비교할 때 상악절대 중첩에서는 설골이 후방에 위치하고, 하악절대 중첩에서는 전방에 위치한다고 보고하였다. 이는 설골의 전후방적 위치가 II급 부정교합에서 다른 균에 비해 후방에 위치한다고 하였다. Grant(26)는 Angle 부정교 합 분류 I, II, III급군에서 설골의 위치의 변화를 연구 하였으며, 설골의 위치변화는 차이의 교합에 의해 결정되는 것이 아니라 근육에 의해 결정된다고 하였다.

본 연구에서는 성인과 아동에서 전후방적 위치에서 유의한 차이를 보이지 않았으며 안모형태의 수직적 분류에 의한 전후방적 위치 변화에서도 유의한 차이를 보이지 않았다. 단지 평균치에서 성인군에서 보다 전방에 위치하였다. 따라서 성장과정 중 설골의 수평적인 위치의 변화는 거의 일정하게 유지되는 것을 알 수 있다.

설골의 수직적 위치 변화에서 있어서 3세정 설골은 제3경추의 1/2하방과 제4경추의 1/2상방사이에 위치 하다가 연령이 증가함에 따라 점점 내려가서 제4경추와 비슷한 수직적 높이를 갖는다. Durzo와 Brodie(27)는 하악에 대한 설골의 위치는 비교적 일정하게 유지되는 경향을 보였고 하였으며, 이 분야의 연구에서 몇몇 저자들은 골격적인 형태와 설골의 위치와 거의 상관관계가 없는 것으로 보아 결론적으로 다른 것으로 결론을 내려도 되었다.

반면에 King(28)은 두개구에 대한 설골의 수직적 거리가 증가하는 것은 상악 구근이 후방로고개의 증가 를 반영한다고 하였고, 이것은 본 연구에서 결과와 일치하는 것으로 성장에서 안모 형태의 수직적 요소가 강할수록 설골과의 거리가 증가하는 반면 아동에서 는 미약한 유의성만을 보였다. 따라서 성장기 아동과 겨의 설골의 위치는 수직적 요소에 미약하게 차이를 보이고 성장함에 따라 안모고개가 증가하면서 설골의 수직적 위치가 점차 하방으로 이동함을 알 수 있었다.

설골과 하악의 위치관계에서 장(29)은 설골과 하악의 설골시절을 통해 서로 연관되어있어서 설골의 위치는 일정한 관리가 있다고 하였고, 조(30)는 설골의 하방이동은 하악으로 위치시킨다고 하여 하악의 하방이동에 따른 설골의 하방이동을 보여준 본 연구에
서의 결과와 일치하였다.

Adamidis와 Spyropoulos[8]의 연구결과에서 1급 부정교합과 3급 부정교합 사이에서 설골의 기울기는 3급 부정교합에서 좀더 reverse inclination을 보였으며, 본 연구의 결과에서는 연하시 원추함에 따라 두개 저에 대해 완만한 경사를 보이고, 또한 같은 연령 개체 내에서 기울기는 일정하게 유지된다고 알 수 있었다.

이것은 같은 연령 개체 내에서는 안모 형태의 수직적 요소와 기울기의 관계에서 상관관계는 거의 없으나 성장과정을 진행하면서 경서도 반시계방향으로 흐름하면서 완만하게 있는 것으로 보아 연령과의 상관 관계가 있는 것을 알 수 있다. 반면에 하악하연에 대한 설골의 기울기는 수직적 요소가 강할수록 좀더 완만한 경사를 보이며 섬유로 성장과정에 따른 변화보다는 수직적 요소에 따른 안모 유형의 대체 차이를 알게 됐다.

골격성 3급 부정교합자에서는 설골과 하악의 위치를 조사하여 설골과 하악의 위치관계를 통해 밀접한 상관관계가 있음을 알 수 있었고 또한 각각의 위치와 안모 형태의 수직적 요소와 같은 연관성이 있음을 보여 주었다. 따라서 교정치료에서 수직적 안모 유형을 갖는 경우에서 성장과정 중에 설골의 위치를 조절하고 작용시키는 것은 예후가 불량할 수 있는 안모의 형태 조절에 중요하게 작용하려 사료된다.

V. 결 론

하악 및 설골의 위치가 악과형태의 어떤 영향에 상관성 있는지 알아보기 위하여 원양대학교 치과병원 교정과에 내원하여 골격성 3급 부정교합자 중 전단 단순 화자 중 성인군(18세 이상) 69명, 성장군(18세 이하) 63명을 대상 하악량강각도를 갖는 군(hyperdivergent group)과 작은 하악량강각도를 갖는 군(hyppodivergent group)으로 분류하였다. 이러한 대상의 두부 방사선기계사진에서 하악 설골의 위치를 계측하여 군간의 비교를 한 결과 다음과 같은 결과를 얻었다.

I. 하악의 높이는 큰 하악량강각도를 갖는 군보다 작은 하악량강각도를 갖는 군에서 성인군보다는 성장군에서 높게 나타났다.

2. 설골의 수직적 높이는 큰 하악량강각도를 갖는 군보다 작은 하악량강각도를 갖는 군에서 성인군보다는 성장군에서 높게 나타났다.

3. 연령과 악과형태의 수직적 분류에 따른 설골의 전방방직 위치의 차이가 없었다.

4. 두개저에 대한 설골의 기울기에 있어 성인군보다 성장군에서 좀 더 가파른 경사도를 갖고 있었다.

참고 문헌

- ABSTRACT -

A study on the position of tongue and hyoid bone in relation to vertical facial patterns in skeletal Class III malocclusion

Kwang-Su Woo, Jeong-Hyun Yoon, Sang-Cheol Kim, Seong-cheol Moon

Department of Orthodontics, College of Medicine, The Catholic University of Korea

The purpose of this study was to evaluate the position of tongue and hyoid bone in relation to vertical facial patterns in the adult and child.

Lateral cephalograms taken in adults (63 cases, 11.7 years in average age) and children (69 cases, 22.6 years in average age) were traced and measured about position and posture of tongue and hyoid bone using the horizontal and vertical reference lines. The angle of mandibular plane to SN plane was employed to classify the samples into groups of hypodivergent and hyperdivergent.

The comparison of the tongue/hyoid bone measurements between hypodivergent group and hyperdivergent group in the adult and child were statistically executed with Student’s t-test.

The results were as follows:

1. The tongue height was lower in the hyperdivergent group than in hypodivergent group, and higher in children than in adults.
2. The vertical height of hyoid bone was higher in hypodivergent group than in hyperdivergent group and also higher in children than in adults.
3. The anteroposterior position was of no significant difference in relation to age or vertical facial pattern.
4. The inclination of hyoid bone in relation to cranial base was steeper in children than in adults.

KOREA. J. ORTHOD. 2000; 30(5): 579-89

* Key words: Tongue, Hyoid bone, Vertical Facial pattern