Design of the Fixed-Bed Catalytic Reactor for the Maleic Anhydride Production

무수마레인산 생산을 위한 고정층 촉매 반응기 설계

  • Yoon, Young Sam (Kum River Water Quality Res. Lab., National Institute of Enviro. Res.) ;
  • Koo, Eun Hwa (Department of Chemical Engineering, College of Engineering, Pusan National University) ;
  • Park, Pan Wook (Department of Chemical Engineering, College of Engineering, Pusan National University)
  • 윤영삼 (국립환경연구원 금강수질검사소) ;
  • 구은화 (부산대학교 화학공학과) ;
  • 박판욱 (부산대학교 화학공학과)
  • Received : 1999.02.18
  • Accepted : 1999.04.19
  • Published : 1999.05.10

Abstract

This paper analyzed the behavior of fixed-bed catalytic reactor (FBCR) which synthesizing maleic anhydride(MA) from the selective oxidation of n-butane. The behavior of FBCR describing convection-diffusion-reaction mechanism is examined by using two-dimensional pseudohomogeneous plug-flow transient model, with the kinetics of Langmuir-Hinshelwood type. Prediction model is composed by optimum parameter estimation from temperature profile, yield and conversion of single FBCR on operating condition variations of Sharma's pilot-plant experiment. A double FBCR with same yield and conversion for single FBCR generated a $8.96^{\circ}C$ lower hot spot temperature than a single FBCR. We could predict parametric sensitivity according to the variation of possible operating condition (temperature, concentration, volumetric flow of feed reactant and coolant flow rate) of single and double FBCR. Double FBCR showed the behavior of more operating range than single FBCR. Double FBCR with nonuniform activities could assure safety operation condition for the possible variation of operating condition. Also, double FBCR had slightly higher than the single FBCR in conversion and yield.

Keywords

Fixed-Bed Catalytic Reactor;Maleic Anhydride;Parametric Sensitivity

References

  1. Ph. D. Dissertation, Pusan National University Y. S. Yoon
  2. Ind. Eng. Chem. v.59 G. Froment
  3. Computers Chem. Engng. v.19 B. Rosendall;B. A. Finlayson
  4. Chem. Eng. Sci. v.36 A. S. Lopez;H. I. De Lasa;J. A. Porras
  5. AIChE. J. v.37 R. K. Sharma;D. L. Cresswell
  6. Ind. Engng. Chem. v.62 V. Hlavacek
  7. AIChE. J. v.23 A. Jutan;J. P. Tremblay;J. F. MacGregor;J. D. Wright
  8. Hwahak Konghak v.35 Y. S. Yun;P. W. Park;H. R. Rho;Y. O. Jeong
  9. Ph. D. Dissertation, University of Houston Y. O. Jeong(Park)
  10. Chem. Eng. Tech. v.46 G. F. Froment
  11. AIChE. J. v.11 J. W. Fulton;O. K. Crosser
  12. AIChE. J. v.17 J. A. Hoiberg;B. C. Hyche;A. S. Foss
  13. Computers Chem. Engng. v.16 R. M. Quinta Ferreira;A. C. Costa;A. E. Rodrigues
  14. Cat. Rev. Sci. Engng. v.9 N. G. Karanth;R. Hughes
  15. Chem. Eng. Sci. v.41 T. P. Wellauer;D. L. Cresswell;E. J. Newson
  16. AIChE. J. v.17 J. A. Hoiberg;B. C. Lyche;A. S. Foss
  17. Chem. Engng J. v.5 J. M. Smith