Catalytic Reduction of Nitric Oxide by Carbon Monoxide over Perovskite-Type Oxide

페롭스카이트형 산화물에서 일산화탄소에 의한 질소산화물의 환원반응

  • Moon, Haeng-Chul (School of Chemical Engineering, Pukyong National University) ;
  • Sun, Chang-Bong (School of Chemical Engineering, Pukyong National University) ;
  • Lee, Gun-Dae (School of Chemical Engineering, Pukyong National University) ;
  • Ahn, Byuong-Hyun (Material Engineering, Pukyong National University) ;
  • Lim, Kwon-Taek (Imaging Science & Technology, Pukyong National University) ;
  • Hong, Seong-Soo (School of Chemical Engineering, Pukyong National University)
  • 문행철 (부경대학교 공과대학 화학공학부) ;
  • 선창봉 (부경대학교 공과대학 화학공학부) ;
  • 이근대 (부경대학교 공과대학 화학공학부) ;
  • 안병현 (부경대학교 공과대학 재료공학부) ;
  • 임권택 (부경대학교 공과대학 화상정보공학부) ;
  • 홍성수 (부경대학교 공과대학 화학공학부)
  • Received : 1998.11.28
  • Accepted : 1999.04.08
  • Published : 1999.05.10

Abstract

We have studied the reduction of NO by CO over perovskite-type oxides prepared by malic and method. The catalysts were modified to enhance the activity by substitution of metal into A or B site of perovskite oxides. In the $LaCoO_3$ type catalyst, the partial substitution of Sr into A site enhanced the catalytic activity on the conversion of NO at less than $350^{\circ}C$. In the $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3$ catalyst, the partial substitution of Fe or Mn into B site enhanced the conversion of NO, but excess amount of Fe decreased the conversion of NO. In addition, $La_{0.6}Sr_{0.4}Co_{0.8}Fe_{0.2}O_3$ mixed with $SnO_2$ or $MnO_2$ showed the synergy effect on the reduction of NO. The introduction of water into reactants feed decreased the catalytic activity but the deactivation was shown to be reversible. The introduction of $SO_2$ into reactants feed also decreased the catalytic activity.

Keywords

Reduction of NO;Perovskite-type Oxides;Malic Acid Method;$SnO_2$;$MnO_2$;Synergy Effect

Acknowledgement

Supported by : 한국과학재단

References

  1. Environ. Catalysis A. Ueda;T. Oshima;M. Haruta;G. Centi
  2. J. Catal. v.65 S. Louis;V. Raj;Srinivasan
  3. J. Catal v.54 F. Solomosi;J. Kiss
  4. Catal. Lett. v.36 M. Ibana;Y. Kintaichi;H. Hamada
  5. Nitrogen Oxides and their effect on health S. D. Lee
  6. The Catalytic Chemistry of Nitrogen Oxides J. Hightowar
  7. Science v.180 R. J. H. Voorhoeve;J. P. Remeika;D. W. Johnson
  8. Powder Metall. v.22 D. J. Anderson;F. R. Sale
  9. New Stoichiometric Compounds A. D. Wadsley
  10. J. Appl. Phys. v.14 H. Obavashi
  11. Solid State Ionics v.45 R. L. Cook;A. F. Sammuells
  12. J. Kor. Ind. & Eng. Chem. v.7 H. D. Moon;H. I. Lee
  13. Appl. Catal., B v.11 L. Simonot;F. Garin;G. Maire
  14. J. Catal. v.36 T. F. Y. Tao
  15. Physica v.19 G. H. Jonker;J. H. van Santen
  16. J. Phys. Chem. v.94 Y. Li;W. K. Hall
  17. Applied Industrial Catalysis v.3 W. S. Briggs
  18. Catal. Lett. v.29 C. Yokoyama;M. Misono
  19. Science v.171 W. F. Libby
  20. React. Kin. & Catal. Lett. S. S. Hong;J. S. Yang;G. D. Lee
  21. J. Kor. Chem. Eng. v.14 S. S. Hong;G. D. Lee;J. W. Park;D. W. Park;K. M. Cho;K. J. Oh
  22. J. Solid State Chem. v.14 R. J. H. Voorhoeve
  23. Catal. Lett. v.9 Y. Torikai;H. Yahiro;N. Misuno;M. Iwamoto
  24. Catalysis v.3 I. S. Nam
  25. Catal. Today v.27 Y. Teraoka;K. Nakano;W. Shangguan;S. Kagawa
  26. J. Ind. & Chem. Eng. v.4 J. S. Yang;G. D. Lee;B. H. Ahn;S. S. Hong