Pervaporation Characteristics of Water/ethanol Mixtures using PVA Membranes Crosslinked with Poly(styrene-maleic anhydride)

Poly (styrene-maleic anhydride)로 가교된 poly(vinyl alcohol) 막을 이용한 물/에탄올 혼합물의 투과증발 특성

  • Kim, Sang-Gyun (Department of Polymer Engineering, Chonnam National University) ;
  • Kim, Yong-Il (Department of Polymer Engineering, Chonnam National University) ;
  • Lim, Gyun-Taek (Department of Polymer Engineering, Chonnam National University) ;
  • Park, Sang-Wook (Department of Chemical Engineering, Pusan National University)
  • 김상균 (전남대학교 고분자 공학과) ;
  • 김용일 (전남대학교 고분자 공학과) ;
  • 임균택 (전남대학교 고분자 공학과) ;
  • 박상욱 (부산대학교 화학공학과)
  • Received : 1998.10.02
  • Accepted : 1999.02.10
  • Published : 1999.05.10


Poly(vinyl alcohol) (PVA) membranes crosslinked with poly(styrene-maleic anhydride) (PSMAn) were prepared, and the pervaporation characteristics of the membranes were studied for the separation of water/ethanol mixtures. The prepared PVA membranes showed that the permeation rate and separation factors were increased with increasing of PSMAn contents in the feed of 92/8 wt. % ethanol/water composition. However, when the water content in the feed composition was increased highly, the overall permeation rate was increased in the order of 2%>1%>0.5% in spite of the increase of the crosslinking contents, and the separation factor was decreased due to the higher sorbed water contents and the consequent plasticization action of membrane. Also, with respect to operating temperature, the permeation rate of the membranes obeyed the Arrhenius type. Especially, in the case of 2% crosslinked membrane, it was shown based on the pervaporation characteristics that both the permeation rate and separation factor were increased with increasing operating temperature from $30^{\circ}C$( to $50^{\circ}C$. From these results, it can be known that the hydrophilic groups introduced in the membrane by PSMAn highly affected the transport of permeants.


Pervaporation;Ethanol-water Mixtures;PVA;PSMAn


  1. J. Membr. Sci. v.33 D. R. Seok;S. G. Kang;S.-T. Huang
  2. Pervaporation Membrane Separation Processes J. Neel;R. Y. M. Huang(ed.)
  3. Polym(Korea). v.14 Y. S. Kang;H. C. Park
  4. J. Memb. Sci. v.65 B. Raghunath;S. T. Hwang
  5. Sep. Sci. Techn. v.29 M. Goto;A. Shiosaki;T. Hirose
  6. J. Appl. Polym. Sci. v.49 H. Yanagishita;T. Nakane;H. Nozoye;H. Yoshitome
  7. J. Korean Ind. & Eng. Chemistry v.9 S. G. Kim;G. T. Lim;S. W. Park
  8. Pervaporation Membrane Separation Processes J. Neel;R. Y. M. Huang
  9. Firtschr. Hochpolym.-Forsch v.3 H. Fujita
  10. J. Appl. Polym. Sci. v.40 A. Mochizuki;Y. Sato;H. Ogawara;S. Yamashita
  11. J. Appl. Polym. Sci. v.60 J. G. Jegal;K. H. Lee
  12. Sep. Sci. Technol. v.28 R. Y. M. Huang;X. S. Feng
  13. J. Membr. Sci. v.19 R. A. Sheldem;E. V. Thompson
  14. J. Appl. Polm. Sci. v.62 C. K. Yeom;J. G. Jegal;K. H. Lee
  15. J. Neel, J. Memb. Sci. v.48 Z. H. Ping;Q. T. Nguyen;R. Clement;J. Neel
  16. J. Memb. Sci. v.2 F. W. Greenlaw;R. A. Shelden;E. V. Thompson
  17. Membrane Handbook H. L. Fleming;C. S. Slater;W. S. W. Ho(ed.);K. K. Sirkar(ed.)
  18. Desalination v.103 M. Tsuyumoto;K. Akita;A. Teramoto
  19. J. Appl. Polym. Sci. v.18 I. Cabasso;J. Jagur-Grodzinski;D. Vofsi
  20. J. Neel, J. Memb. Sci. v.17 C. Larchet;G. Bulvestre;M. Guillou
  21. J. Membr. Sci. v.49 I. Blume;J. G. Wijmers;R. W. Baker