Oxidation of Cu(II)-EDTA by TiO2 Photo-Catalysis(I) - The Effects of TiO2 Loading & Initial pH of Solution -

TiO2 광-촉매 반응에 의한 Cu(II)-EDTA의 산화(I) - TiO2 량과 pH의 영향 -

  • Chung, Hung-Ho (Department of Fine Chemicals Engineering and Chemistry, College of Engineering, Chungnam National University) ;
  • Park, Eun-Hee (Department of Fine Chemicals Engineering and Chemistry, College of Engineering, Chungnam National University) ;
  • Rho, Jae-Seong (Department of Fine Chemicals Engineering and Chemistry, College of Engineering, Chungnam National University) ;
  • Sung, Ki-Woung (Korea Atomic Energy Research Institute) ;
  • Cho, Young-Hyun (Korea Atomic Energy Research Institute)
  • 정흥호 (충남대학교 공과대학 정밀공업화학과) ;
  • 박은희 (충남대학교 공과대학 정밀공업화학과) ;
  • 노재성 (충남대학교 공과대학 정밀공업화학과) ;
  • 성기웅 (한국원자력연구소) ;
  • 조영현 (한국원자력연구소)
  • Received : 1998.09.17
  • Accepted : 1998.11.14
  • Published : 1999.02.10

Abstract

EDTA (ethylenediaminetetraacetic acid), a chelating agent is most widely used in industrial applications, especially for cleaning of metals in water, frequently prohibits metal removal from water in conventional water treatment technologies. It could be easier to remove aqueous metal ions by the breakdown of DETA complexed bonds first. This study investigated the availability of $TiO_2$ photo-catalysis for the aqueous phase oxidation of Cu(II)-EDTA, under an aerobic condition at $20^{\circ}C$ with $TiO_2$ (Degussa P-25) and 1.79mM of Cu(II)-EDTA. When $TiO_2$ loading was 2.0 g/L, the photo-catalytic oxidation of Cu(II)-EDTA was maximal. The tendency of EDTA adsorption onto the catalyst surface was affected by $TiO_2$ surface charge, and the oxidation rate of Cu(II)-EDTA by photo-catalysis was shown to be dependent upon the tendency of EDTA adsorption before photo-irradiation.

References

  1. Nature Electrochemical Photolysis of Water at a Semiconductor Electrode Fujishima, A.;Honda, K.
  2. Trace Metals in the Environment3: Photocatalytic Purification and Treatment of Water and Air Ollis, D. F.;Al-Ekabi H.(ed.)
  3. Photocatalysis-Fundamentals and Application Serpone, N.;Pelizzetti, E.(ed.)
  4. Chem.Rev. v.95 Hoffmann, M. R.;Martin, S. C.;Choi, W.;Bahnemann, D. W.
  5. J. Catal. v.122 Turchi, C. S.;Ollis, D. F.
  6. GWF Gas Wasserfach: Wasser/Abwasser v.130 Frimmel, F. H.
  7. Decontamination of Nuclear Reactors and Equipment Ayres, J. A.
  8. Environ. Sci. Technol. v.31 no.3 Thomas, H. M.(ed.);Abhaya, K. D.(ed.);Melissa, F.(ed.)
  9. EPA-600/S2-84-023 Sulfide Precipitation of Heavy Metal Bhattacharyya, D.;Ku, Y.
  10. Environ. Sci. Technol. v.29 Kari, F. G.;Hilger, S.;Canonica, S.
  11. Chem. Rev. v.95 Amy L. Limsekigler;Grangquan Lu;John T. Yates, Jr.
  12. Chem. Rev. v.93 Legrini, O.;Oliveros, E.;Braun, A. M.
  13. J. Applied Electrochemistry v.25 Rajeshwar, K.
  14. Bull. Chem. Soc. Jpn. v.58 Okamoto, K.;Yamamoto, Y.;H. Tanaka;M. Tanaka;A. Itaya
  15. J. Phys. Chem. v.94 Uchihara, T.;Matsumura, M.;Ono, J.;Tsubomura, H.
  16. Solar Energy v.34 no.6 Loy, L.;Wolf, E. E.
  17. Environ. Sci. Technol. v.25 no.3 Kormann, C.;Bahnemann, D. W.;Hoffmann, M. R.
  18. Aquatic Chemistry : An Introduction Emphasizing Chemical Equilibria in Natural Waters Stumm, W.;Morgan, J. J.
  19. J. Photobiology A: Chemistry v.12 Nohana, K.;Hidaka, H.;Pelizzethi, E.;Serpone, N.
  20. J. Cata. v.111 Mattews, R. W.
  21. J. Chem. Soc., Faraday Trans. v.1 no.80 Matthews, R. W.
  22. Photochemistry and Photobiology v.29 Fife, D. J.;Moore, W. M.
  23. J. Phys. Chem. v.89 Mulazzani, Q. G.;Venturi, M.;Hoffman, M. Z.
  24. Ph. D. Thesis No. 10698, Swiss Federal Institue of Technologt Kari, F. G.
  25. Water Res Kari, F. G.;Giger, W.
  26. Can. J. Chem. v.73 Chen, D.;Martell, A. E.;McManus, D.
  27. J. Phys. Chem. v.94 Abdullah, M.;Low, G. K. C.;Matthews, R. W.
  28. Nouv. J. Chim. v.9 Borgarello, E.;Harris, R.;Serpone, N.