On the In situ Composites Containing TLCP Polymerized in PMMA Solution

PMMA 용액에서 중합된 TLCP in situ 복합재료에 관한 연구

  • Kim, Sung-Kug (Department of Chemical Engineering, Chosun University) ;
  • Yun, Doo-Soo (Department of Polymer Science & Engineering, Chosun University) ;
  • Choi, Soo-Kyung (Department of Chemical Engineering, Chosun University) ;
  • Bang, Moon-Soo (Department of Industrial Chemistry, Chonan National Technology College) ;
  • Choi, Jae-Kon (Department of Polymer Science & Engineering, Chosun University) ;
  • Jo, Byung-Wook (Department of Chemical Engineering, Chosun University)
  • 김성국 (조선대학교 공과대학 화학공학과) ;
  • 윤두수 (조선대학교 공과대학 고분자공학과) ;
  • 최수경 (조선대학교 공과대학 화학공학과) ;
  • 방문수 (천안공업대학 공업화학과) ;
  • 최재곤 (조선대학교 공과대학 고분자공학과) ;
  • 조병욱 (조선대학교 공과대학 화학공학과)
  • Received : 1998.09.10
  • Accepted : 1998.11.10
  • Published : 1999.02.10

Abstract

In situ composites containing a thermotropic liquid crystalline polymer were prepared by polycondensation of 1,4-bis(p-hydroxy-benzoyloxy)butane with 2-bromoterephthaloyl chloride in a poly(methyl methacrylate) solution. Morphology and mechanical, thermal properties of the composites were examined by differential scanning calorimeter(DSC), dynamic mechanical thermal analyser(DMTA), optical microscope and scanning electron microscope(SEM). The TLCP domains showed nematic phase. The glass transition temperature($T_g$) and mechanical properties of the PMMA in the composites increased with increasing the content of TLCP. The TLCP domains were finely dispersed in the PMMA matrix. The 20 wt % TLCP/PMMA composite prepared by in situ polymerization showed more improved mechanical property with finely well dispersed morphology compared with that prepared by solution blending of the same composition.

References

  1. Bull. Soc. Chim. Belg. v.99 G. Crevecoeur;G. Groeninckx
  2. Polym. Compos. v.8 P. D. Frayer
  3. Bill Contempoary Topic in Polymer Science D. G. Baird;R. Ramanathan;Culbertson(ed.)
  4. Polym. Eng. Sci. v.30 B. Y. Shin;I. J. Chung
  5. J. Appl. Polym. Sci. v.60 J. H. Chang;B. W. Jo
  6. Adv. Polym. Tech. v.13 O. Roetting;G. Hinrichsen
  7. J. Macromol. Sci. Phys. v.B17 M. Takayanagi;T. Ogata;M. Morikawa;T. Kai
  8. J. Polym. Sci. Polym. Chem. Ed. v.19 M. Takayanagi;T. Katayose
  9. Polym. Eng. Sci. v.27 G. Kiss
  10. Polym. Eng. Sci. v.31 A. K. Mithal;A. Tayebi;C. H. Lin
  11. Polym. Eng. Sci. v.27 K. G. Blizard;D. G. Baird
  12. Polym. Eng. Sci. v.27 R. A. Weiss;W. Huh;L. Nicoals
  13. Polym. Eng. Sci. v.29 A. Kohli;N. Chung;R. A. Weiss
  14. Polym. Eng. Sci. v.29 T. M. Malik;P. J. Carreau;N. Chapleau
  15. Polym. Sci. & Tech. v.5 J. H. Chang;B. W. Jo
  16. Polym. J. v.22 N. Ogata;K. Sanui;H. Itaya
  17. Makromol. Chem. Rapid Commum. v.4 C. K. Ober;J-I. Jin;R. W. Lenz
  18. Textures of Liquid Crystals D. Demus;L. Richter
  19. J. of Korean Ind. & Eng. Chemistry v.8 J. K. Choi;M. S. Bang;C. Han
  20. J. of Korean Ind. & Eng. Chemistry v.8 J. K. Choi
  21. Ph. D. Thesis, Chosun University M. S. Bang