Direct Incorporation of Carbon Dioxide to Poly(GMA) Using Quaternary Ammonium Salt Catalysts

4차 암모늄염 촉매를 이용한 Poly(GMA)에의 이산화탄소 직접 고정화

  • Sung, Chung-Ki (Department of Chemical Engineering, Pusan National University) ;
  • Kim, Kyung-Hoon (Department of Chemical Engineering, Pusan National University) ;
  • Moon, Jeong-Yeol (Department of Chemical Engineering, Pusan National University) ;
  • Chun, Sung-Woo (Department of Chemical Engineering, Pusan National University) ;
  • Na, Suk-Eun (Department of Chemical Engineering, Pusan National University) ;
  • Park, Dae-Won (Department of Chemical Engineering, Pusan National University)
  • 성충기 (부산대학교 공과대학 화학공학과) ;
  • 김경훈 (부산대학교 공과대학 화학공학과) ;
  • 문정열 (부산대학교 공과대학 화학공학과) ;
  • 천승우 (부산대학교 공과대학 화학공학과) ;
  • 나석은 (부산대학교 공과대학 화학공학과) ;
  • 박대원 (부산대학교 공과대학 화학공학과)
  • Received : 1998.08.17
  • Accepted : 1998.11.14
  • Published : 1999.02.10

Abstract

This study is related to the investigation of the direct incorporation of $CO_2$ to polymer using quaternary ammonium salt catalysts. Quaternary ammonium salts showed good catalytic activity of $CO_2$ fixation in the synthesis of poly[(1,3-dioxolane-2-oxo-4-yl)methyl methacrylate] [poly(DOMA)] by the direct incorporation of $CO_2$ to poly(glycidyl methacrylate)[poly(GMA)]. Among the salts tested, the ones with higher alkyl chain length and with more nucleophilic counter anion showed higher catalytic activity. The yield of carbon dioxide addition increased with the reaction temperature. Kinetic study was carried out by measuring the variation of $CO_2$, pressure in a high pressure batch reactor. The reaction rate was first order to the concentration of poly(GMA) and $CO_2$, respectively. The rate constant was $0.69L/mol{\cdot}h$ and Henry's constant of $CO_2$ in DMSO at $80^{\circ}C$ was $6.8{\times}10^{-4}mol/L{\cdot}KPa$.

Acknowledgement

Supported by : 한국과학재단

References

  1. J. Geophys. Res. v.90 V. Ramanathan;R. J. Cierone;H. B. Singh;J. T. Kiehl
  2. Catalysis v.11 M. J. Choi;K. W. Lee
  3. Polym. J. v.17 G. Rokicki;J. Pawlicki;W. Kuran
  4. Polym. J. v.20 G. Rokicki;P. Jezewski
  5. Monat. Chem. v.115 G. Rokicki;W. Kuran;B. P. Marcinak
  6. Makromol. Chem. v.193 N. Kihara;T. Endo
  7. J. Chem. Soc., Chem. Commun. N. Kihara;T. Endo
  8. Makromol. v.25 N. Kihara;T. Endo
  9. Makromol. v.28 T. Sakai;N. Kihara;T. Endo
  10. Studies in surface Science and Catalysis v.114 D. W. Park;J. Y. Moon;J. G. Yang;S. M. Jung;J. K. Lee;C. S. Ha
  11. React. Kinet. Catal. Lett. v.61 J. Y. Moon;J. G. Yang;D. W. Park;J. K. Lee
  12. Phase Transfer Catalysis C. M. Starks;C. L. Liotta;M. Halpern
  13. J. Korean Ind. & Eng. Chemistry v.7 D. W. Park;J. Y. Moon;J. G. Yang;S. M. Jung;J. K. Lee
  14. J. Org. Chem. v.32 R. G. Perason;J. Songstad
  15. J. Org. Chem. v.58 N. Kihara;N. Hara;T. Endo
  16. J. Korean Ind. & Eng. Chemistry v.6 D. W. Park;J. Y. Moon;J. G. Yang;S. W. Park;J. K. Lee
  17. chem. Rev. v.77 E. Wilhelm;R. Battino;R. J. Wilcock