Studies on the Micelle Formation of Surfactant Solution(2) - Self-Diffusion by Phase Transition in Ternary System of Surfactant/Hydrocarbon/Water -

계면활성제 수용액에서 미셀형성(제2보) - 계면활성제/탄화수소/물의 상 변화에 따른 자기확산 -

  • Choi, Seung Ok (Department of Industry and Engineering Chemical, Chungbuk National University) ;
  • Lee, Jin Hee (Department of Industry and Engineering Chemical, Chungbuk National University) ;
  • Kim, Sang Chun (Department of Industry and Engineering Chemical, Chungbuk National University) ;
  • Nam, Ki Dae (Department of Industry and Engineering Chemical, Chungbuk National University)
  • 최성옥 (충북대학교 공과대학 공업화학과) ;
  • 이진희 (충북대학교 공과대학 공업화학과) ;
  • 김상춘 (충북대학교 공과대학 공업화학과) ;
  • 남기대 (충북대학교 공과대학 공업화학과)
  • Received : 1998.08.13
  • Accepted : 1998.12.28
  • Published : 1999.02.10

Abstract

The pulsed field gradient NMR method has been used to determine self-diffusion coefficients in ternary N-alkyl-N, N-dimethylamine oxide/hydrocarbon/$D_2O$ system. For n = 12, 14, 16 and n' = 8, 10, 12, 14, 16, in the micellar phase, diffusion is chiefly governed by the hydrodynamic transport of micelles, supplemented by an exchange of solubilized hydrocarbon upon micellar collisions. This investgation is performed by variations in both the surfactant alkyl chain length and in the size of the hydrocarbon molecules. In cubic phases, the solvent still exhibits values of the diffusion coefficients which are typical for motion in a continuous water phase, with the microemulsion droplets acting as obstacle. Mobilities of the surfactant in the gel state were low and have been determined only for the surfactant($C_{12}DMAO$) with the shortest alkyl chain length. Exchange of hydrocarbon between micellar entities in the gel was found to be occured by a hopping process, the associated rate decreased with alkyl chain length of the surfactant.

References

  1. Colloid Polym. Sci. v.268 K. Fontell.
  2. adv. Colloid Interface. Sci. v.41 K. Fontell
  3. Acta Chem. Scand. v.22 K. Fontell;L. Mandell;P. Ekwall
  4. J. Colloid Interface Sci. v.103 C. L. Mesa;A. Khan;K. Fontelland;B. J. Lindman
  5. J. Phys. Chem. v.94 D. A. Anderson;H. Wennerstrom
  6. Proceeding 6th International Conferance on Colloid and Interface Science, Hakone, Japan, June 1988., Colloids Surf. v.38 B. Lindman;K. Shinoda;U. Olsson;D. Anderson
  7. ACS Symp. Ser. v.1 P. S. Russo
  8. Colloids Sur. v.38 G. Oetter;H. Hoffmann
  9. Colloid Polym. Sci. v.268 M. Gradzielski;H. Hoffmann;G. Oetter
  10. J. Colloid Interface Sci. v.153 K. L. Walther;M. Gradzielski;H. Hoffmann;A. Wokaun.
  11. J. Chem. Phys. v.42 E. O. Stejskal;J. E. Tanner
  12. J. Chem. Phys. v.58 J. Charvolin
  13. J. Colloid Interface Sci. v.53 G. J. T. Tiddy.
  14. J. Colloid Interface Sci. v.89 PETER. Stilbs
  15. J. Phys. Chem. v.88 Per-Gunnar Nilsson;Bjorn. Lindman
  16. J. Applied Polymer Sci. v.58 F. John;E. James;Roberts.
  17. Prog. NMR Spectrosc. v.19 P. Stilbs
  18. J. Chem. Soc., Faraday Trans. v.84 P. O. Eriksson;G. Lindman;E. E. Burnell;G. J. T. Tiddy
  19. J. hem. v.80 E. A. G. Aniansson;S. N. Wall;M. Almgreen;H. Hoffmann
  20. J. Phys. Chem. v.96 G. Oradd;G. Lindman;L. Johansson;G. Wikander
  21. The Mathematics of Diffusion J. Crank