Effect of Deposition Pressure on the Conductivity and Optical Characteristics of a-Si:H Films

증착 압력이 a-Si:H막의 전도도와 광학적 특성에 미치는 영향

  • Jeon, Bup-Ju (Department of Chemical Engineering, Dan-kook University) ;
  • Jung, Il-Hyun (Department of Chemical Engineering, Dan-kook University)
  • 전법주 (단국대학교 화학공학과) ;
  • 정일현 (단국대학교 화학공학과)
  • Received : 1998.08.10
  • Accepted : 1998.09.30
  • Published : 1999.02.10

Abstract

In this work, we investigated hydrogen content, bond structure, and electrical properties of a-Si:H films prepared by ECR plasma CVD as a function of pressure. In general, the photo sensitivity of a-Si:H films prepared by CVD method decreases as the deposition rate increases, but the photo sensitivity of a-Si:H films prepared by ECR plasma deposition method increases as the deposition rate increases. In the same condition of microwave power, the ratio of $SiH_4/H_2$, and pressure, though film thickness increases linearly with deposition time and hydrogen content in the film is constant, photo conductivity can be decreased because $SiH_2$ bond is made more than SiH bond in the short reaction time. According to increase pressure in the chamber, SiH bond in the film increase and optical energy gap decrease. So, photo conductivity can be increased. But photo sensitivity decreased as dark conductivity increase. It must be grown in the condition of low pressure and hydrogen gas for taking the a-Si:H film of high quality.

Acknowledgement

Supported by : 단국대학교

References

  1. Handbook of Plasma Processing Technology(Fundamentals, Etching, Deposition, and Surface Interactions) S. M. Rossnagel;J. J. Cuomo;W. D. Westwood
  2. J. Appl. Phys. v.53 M. Kitagawa;K. Mori;S. Ishihara;M. Ohno;T. Hirao;Y. Toshioka;S. Kohiki
  3. J. Appl. Phys. v.73 Y. Hishikawa;S. Tsuda;K. Wakisaka;Y. Kuwano
  4. J. Non-Cryst. solids v.73 D. Caputo;G. de Cesare;F. Irrera;F. Palma;M. C. Rossi;G. Conte;G. Nobile;G. Fameli
  5. J. Phys. Chem. v.88 Longeway P. A.;Estes R. D.;Weakliem H. A.
  6. Appl. Phys. Lett. v.44 T. Hamasaki;M. Ueda;A. Chayara;M. Hirose;Y. Osaka
  7. Jpn. J. Appl. Phys. v.26 K. Kobayashi;M. Hayama;S. Kauamoto;H. Mike
  8. Jpn. J. Appl. Phys. v.25 T. Watanabe;K. Azufumi;M. Makatani;K. Suzuki;T. Sonobe;T. Shimada
  9. Jpn. J. Appl. Phys. v.26 M. Kitagawa;S. I. Ishihara;K. Setsune;Y. Manabe;T. Hirao
  10. Appl. Phys. Lett. v.57 Y. Nakayama;M. Kondoh;K. Hitsuishi;M. Zhang;T. Kawamura
  11. J. Vac. Sci. Technol. v.A10 J. M. Essick;F. S. Pool;Y. H. Shink
  12. J. Materials Chemistry and Physics v.51 B. J. Jeon;M. S. Kang;J. Y. Kim;Y. S. Koo;T. H. Lim;I. H. Oh;C. An;I. H. Jung
  13. Jpn. J. Appl. Phys. v.2 B. J. Jeon;M. S. Kang;J. Y. Kim;T. H. Lim;I. H. Oh;C. An;I. H. Jung
  14. J. Appl. Phys. v.54 B. A. Scott;J. A. Reimer;P. A. Longeway
  15. J. Appl. Phys. v.59 F. Demichelis;E. Mezzetti;A. Tagliaferro;E. Tresso
  16. J. Non-cryt. Solids v.103 R. V. Kruzelecky;C. Ukah;D. Rakanski;S. Zukokynski
  17. Jpn. J. Appl. Phys. v.30 H. Yoshihiro;N. Noboru;T. Shinya;N. Shoichi;K. Yasuo;K. Yukinori
  18. Physical review v.B16 M. H. Brodsky;M. Cardona;J. J. Cuomo