Carbon Dioxide-Isopropyl Alcohol System: High Pressure Phase Behavior and Application with SAFT Equation of State

이산화탄소-이소프로필 알코올계: 고압 상거동 및 SAFT 상태방정식 적용

  • Kwak, Chul (Department of Chemical Engineering, Kyungnam University) ;
  • Byun, Hun-Soo (Department of Chemical Engineering, Yosu National University)
  • 곽철 (경남대학교 화학공학과) ;
  • 변헌수 (여수대학교 화학공학과)
  • Received : 1998.12.17
  • Accepted : 1999.02.10
  • Published : 1999.04.10

Abstract

In this work, high pressure binary phase equilibria data of carbon dioxide and isopropyl alcohol were obtained by experiment. A static type experimental apparatus was made to measure temperature, pressure and phase equilibria composition. The experimental apparatus was tested by comparing the measured phase equilibria data of the carbon dioxide-isopropyl alcohol system at $80^{\circ}C$ with those of Rodosz. The binary phase behavior data of carbon dioxide-isopropyl alcohol system were measured in range of 41 to 133 bar and at temperatures of 40, 60, 80, 100 and $120^{\circ}C$. The solubility of isopropyl alcohol increases as the temperatures increases at constant pressure. Also, these carbon dioxide-alcohol solute system have critical-mixture curves that exhibit maxima in pressure at temperatures between the critical temperatures of carbon dioxide and isopropyl alcohol. The experimental data obtained in this study were modeled using the statistical associating fluid theory(SAFT) equation of state. A good fit of the data was obtained with SAFT using two adjustable parameters for the carbon dioxide-isopropyl alcohol system.

Keywords

$CO_2$-Isoproyl Alcohol System;Binary System;Phase Behavior;SAFT Modeling

Acknowledgement

Supported by : 경남대학교

References

  1. 화학공업과 기술 v.13 김성태;조정호;박상진
  2. Fluid Phase Equilibria v.115 H. S. Byun;B. M. Hasch;M. A. McHugh
  3. The Properties of Gases & Liquids(4th ed.) R. C. Reid;J. M. Prausnitz;B. E. Poling
  4. Ind. Eng. Chem. Res. v.29 S. H. Huang;M. Radosz
  5. J. Stat. Phys. v.35 M. S. Wertheim
  6. J. Stat. Phys. v.42 M. S. Wertheim
  7. Macromolecules v.11 I. C. Sanchez;R. H Lacombe
  8. J. Phys. Chem. v.93 P. Vinalehand;M. D. Donohue
  9. Macromolecules v.24 C. G. Panayiotou;I. C. Sanchez
  10. AlChE J. v.21 S. Beret;J. M. Prausnitz
  11. Handbook of Physical Properties of Liquid and Gases N. B. Vargaftik
  12. J. Chem. Eng. Data v.31 M. Radosz
  13. 공업화학 v.9 변헌수;김윤섭;임종균
  14. Supercritical Fluid Extraction: Principles and Practice (2nd ed.) M. A. McHugh;V. J. Krukonis
  15. Ind. Eng. Chem. Res. v.30 S. H. Huang;M. Radosz
  16. J. Stat. Phys. v.35 M. S. Wertheim
  17. Ind. Eng. Chem. Res. v.29 W. G. Chapman;K. E. Gubbins;G. Jackson;M. Radosz
  18. Pure & Appl. Chem. v.59 W. G. Chapman;K. E. Gubbins;C. G. Joslin;C. G. Gray
  19. Mol. Phys. v.5 W. G. Chapman;G. Jackson;K. E. Gubbins
  20. J. Stat. Phys. v.42 M. S. Wertheim
  21. J. Chem. Phys. v.56 B. J. Alder;D. A. Young;M. A. Mark
  22. J. Chem. Phys. v.51 N. F. Carnahan;K. E. Starling