Pervaporation Separation of Water-isopropanol Mixtures Through Modified Asymmetric Polyetherimide membranes: the Effect of NaOH Concentration for the Modification of Skin Layers on the Pervaporation Characteristics

개질 비대칭 폴리에테르이미드막을 통한 물-이소프로판올 혼합물의 투과증발 분리: 투과증발 특성에 미치는 표면층 개질에 사용된 NaOH 농도의 영향

  • Kim, Sang-Gyun (Membranes and Separation Research Center, Korea Research Institute of Chemical Technology) ;
  • Jegal, Jonggeon (Membranes and Separation Research Center, Korea Research Institute of Chemical Technology) ;
  • Lee, Kew-Ho (Membranes and Separation Research Center, Korea Research Institute of Chemical Technology)
  • 김상균 (한국화학연구소 분리소재연구센터) ;
  • 제갈종건 (한국화학연구소 분리소재연구센터) ;
  • 이규호 (한국화학연구소 분리소재연구센터)
  • Received : 1998.11.30
  • Accepted : 1999.01.16
  • Published : 1999.04.10

Abstract

Asymmetric polyetherimide membranes were prepared by phase inversion method. In the modification of the skin layers of polyetherimide membranes, the effects of NaOH concentration on the morphology and pervaporation separation of water-isopropanol mixtures were investigated. With increasing concentration of NaOH solution, polyamicacid structure was formed by the hydrolysis of imide group of polyetherimide, and the thickness of dense layer of the asymmetric membrane increased. In the pervaporation separation of water-isopropanol mixtures the overall permeation rate decreased and the separation factor increased with increasing concentration of NaOH solution. However, when the concentration of NaOH solution was very high, the permeation rate increased but separation factor decreased. From these results, it was found that the permeation behaviors of asymmetric polyetherimide membranes depended upon the concentration of NaOH solution. These modified membranes showed that both the permeation rate and separation factor increased as the operating temperature increased.

Keywords

Polyetherimide;Water-isopropanol Mixture;Pervaporation;Asymmetric Membrane;NaOH

References

  1. J. Membr. Sci. v.33 D. R. Seok;S. G. Kang;S.-T. Huang
  2. J. Appl. Polym. v.57 R. Y. M. Huang;X. Feng
  3. J. Appl. Polym. Sci. v.54 Y. Fang;Y. A. Pham;T. Matsura;J. P. Santerre;R. M. Narbaitz
  4. J. Appl. Polym. Sci. v.49 H. Yangishita;T. Nakane;H. Nozoye;H. Yoshitome
  5. J. Appl. Polym. v.30 M. H. V. Mulder;J. Oude Hendrikman;J. G. Wijmans;C. A. Smolders
  6. Membrane Handbook H. L. Fleming;C. S. Slagter;W. S. W. Ho;K. K. Sirkar(ed.)
  7. Macromol. Symp. v.126 H. H. Schwarz;K. Richau;R. Apostel
  8. Ind. Eng. Chem. Res. v.32 X. Feng;S. Sourirajan;H. Tezel;T. Matsuura;B. A. Farnand
  9. J. Appl. Polym. Sci. v.67 K. R. Lee;S. J. Yu;S. L. Huang;D. M. Wang;J. Y. Lai
  10. J. Member. Sci. v.136 M. Ulbricht;H. H. Schwarz
  11. J. Korean Ind & Eng. Chem. v.8 S. G. Kim;J. G. Jegal;K. H. Lee
  12. Polyimides: Synthesis, Characterization, and Application v.1 I. W. Serfaty;K. L. Mittal(ed.)
  13. Pervaporation Membrane Separation Processes J. Neel;R.Y.M. Huang(ed.)
  14. J. Korean Ind. & Eng. Chem. v.8 S. G. Kim;J. G. Jegal;K. H. Lee