Tetramethyl orthosilicate(TMOS) Synthesis by the Copper-Catalyzed Reaction of the Metallic Silicon with Methanol (I) - Effect of the Manufacturing Condition and the Composition of Contact Mass on TMOS Synthesis -

구리 촉매하에서 규소와 메탄올의 반응에 의한 Tetramethyl orthosilicate (TMOS) 합성(제1보) - 접촉물질의 제조방법 및 구성성분이 TMOS 합성에 미치는 영향 -

  • Soh, Soon-Young (Hanwha Chemical Research and Engineering Center) ;
  • Han, Kee-Doo (Hanwha Chemical Research and Engineering Center) ;
  • Won, Ho-Youn (Hanwha Chemical Research and Engineering Center) ;
  • Chun, Yong-Jin (Department of New Mat. & Appl. Chem., Chungwoon University) ;
  • Lee, Bum-Jae (Department of Fine Chemicals Engineering and Chemistry, Chungnam National University) ;
  • Yang, Hyun-Soo (Department of Fine Chemicals Engineering and Chemistry, Chungnam National University)
  • 소순영 (한화종합화학중앙연구소) ;
  • 한기도 (한화종합화학중앙연구소) ;
  • 원호연 (한화종합화학중앙연구소) ;
  • 전용진 (청운대학교 신소재응용화학과) ;
  • 이범재 (충남대학교 정밀공업화학과) ;
  • 양현수 (충남대학교 정밀공업화학과)
  • Received : 1998.09.12
  • Accepted : 1999.01.12
  • Published : 1999.04.10

Abstract

Tetramethyl orthosilicate (TMOS) was obtained by the direct synthesis of methanol with metallic silicon including copper compound as a catalyst and zinc compound as a promoter. The effects of the preheating temperature and the preparation method of the contact mass on TMOS synthesis were investigated. The composition effects of the contact mass which was composed of metallic silicon with copper catalyst and various metallic halide promoters including Zn, Sn or Cd compound were studied also. The best performance on TMOS synthesis was observed on a mixed bed reactor containing metallic silicon preheated with CuCl as a catalyst and $ZnCl_2$ as a promoter. When Cu/Si = 7 wt %, Zn/Cu = 7 wt % was mixed in a slurry phase and activated into contact mass at $380^{\circ}C$, the average selectivity was 87.2% in the silicon consumption of 69.2% at $220^{\circ}C$.

Keywords

Tetramethyl orthosilicate (TMOS);Metallic silicon;Methanol;Contact Mass

References

  1. Organometallics v.16 J. S. Han;S. H. Yeon;B. R. Yoo;I. N. Jung
  2. J. Catal. v.128 L. D. Gasper-Galvin;D. M. Sevenich;H. B. Friedrich;D. G. Retwish
  3. J. Am. Chem. Soc. v.70 E. G. Rochow
  4. J. Catal. v.125 E. Suzuki;Y. Ono
  5. Eur. Patent Appl. v.280
  6. J. Catal. v.147 S. J. Potochnik;J. L. Falconer
  7. Col. Czech Chem. Comm. v.26 J. Joklik;M. Kraus;V. Bazant
  8. J. Catal.
  9. Inorg. Chem. v.9 W. E. Newton;E. G. Rochow
  10. J. Catal. v.91 T. C. Frank;K.B. Kester;J.L.Falconer
  11. J. Korean Ind.& Eng. Chem. v.8 H. D. Jang;H. S. Yoon
  12. Japan Tokyo Kokai Koho, 63-27493
  13. Japan Tokyo Kokai Koho, 62-286992
  14. J. Korean Ind. & Eng. Chem. v.8 C. K. Cho;K. D. Han
  15. J. Catal. v.4 J. H. Voorhoeve;J. C. Vlugter
  16. J. Catal. v.143 M. Okamoto;M. Osaka;K. Yamamoto;E. Suzuki;Y. Ono
  17. J. Catal. v.100 W. J. Ward;A. Ritzer;K. M. Carroll;J. W. Flock
  18. J. Mater. Sci. Lett. v.14 J. Smolik;P. Moravec
  19. J. Catal. v.128 L. D. Gasper-Galvin;D. M. Sevenich;H. B. Friedrich;D. G. Rethwish
  20. J. Am. Chem. Sco. v.67 E. G. Rochow