A Study on the Control of Pseudoephedrine Hydrochloride Release from Hydroxypropylmethylcellulose Matrices

Hydroxypropylmethylcellulose로부터 염산슈도에페드린의 방출조절에 관한 연구

  • Cho, Hoon (Department of Chemistry, Chungbuk National University) ;
  • Bang, Moon-Soo (Department of Industrial Chemistry, Chonan National Technical College) ;
  • Chung, Yongseog (Department of Chemistry, Chungbuk National University)
  • 조훈 (충북대학교 화학과) ;
  • 방문수 (천안공업대학 공업화학과) ;
  • 정용석 (충북대학교 화학과)
  • Received : 1998.07.08
  • Accepted : 1998.12.23
  • Published : 1999.04.10

Abstract

Hydroxypropylmethylcelluloses (HPMC) are cellulose ethers which may be used as the basis for hydrophilic matrices for controlled release oral delivery and offer the advantages of being non-toxic and relatively inexpensive. In this work, we designed new drug release system using HPMC as matrix, manufactured by direct compression technology and have investigated the effects of the controlling factors on drug release from a swellable hydrophillic delivery system. It was found that the release rate of the drug decreased with increasing the polymer molecular weight and the polymer content in tablets, and was independent of compaction pressure and pH of dissolution fluids. Especially, the ability of the anionic surfactant, sodium laurylsulfate, to retard the release of pseudoephedrine hydrochloride from HPMC was characterised. With increasing the concentration of the sodium laurylsulfate within the matrix, drug release rate decreased. It is believed that, provided the pseudoephedrine hydrochloride and the sodium laurylsulfate are oppositely charged, they will bind together in situ within the HPMC matrix, leading to reduced drug release rates.

Keywords

Hydrophillic Delivery System;Drug Release;Hydroxypropylmethylcellulose

References

  1. Int. J. Pharm. Technol. Prod. Maufac. v.5 D. A. Alderman
  2. Int. J. Pharm. v.24 J. L. Ford;M. H. Rubinstein
  3. Int. J. Pharm. v.40 J. L. Ford;M. H. Rubinstein;F. McCaul;J. E. Hogan;P. J. Edgar
  4. Int. J. Pharm. v.41 L. C. Feely;S. S. Davis
  5. Int. J. Pharm. v.71 J. L. Ford;K. Mitchell;D. Sawh;S. Ramdour;D. J. Armstrong;C. Rostron;J. E. Hogan
  6. J. Pharm. Sci. v.55 H. E. Huber;L. B. Dale;G. L. Christensen
  7. Clin. Pharm. v.4 D. A. Graves;K. S. Rotenberg;J. R. Woodworth;L. P. Amsel;O. N. Hinsvark
  8. Acta Pharm. Technol. v.29 D. Voegele;D. Brockmeier;H. M. Hattingberg;B. C. Lippold
  9. J. Controlled release v.6 P. I. Lee;N. a. Pepas
  10. J. Pharm. Sci. v.84 T. C. R. Ju;P. R. Nixon;M. V. Patel
  11. Drug Development and Industrial Pharmacy v.15 J. E. Hogan
  12. Pharmacotherapy v.13 I. Kanfer;r. Dowse;V. Vuma
  13. J. Pharm. Sci. v.84 T. C. R. Ju;P. R. Nixon;M. V. Patel
  14. Int. J. Pharm. v.24 J. L. Ford;M. H. Rubinstein;J. E. Hogan
  15. JAMA v.252 P. Pentel
  16. US Patent, 3,065,143 G. L. Christensen;L. B. Dale
  17. J. Pharm Sci. v.55 H. Lapidus;N. G. Lordi
  18. Int. J. Pharm. v.44 L. C. Feely;S. S. Davis
  19. Drug Intell. Clin. Pharm. v.18 J. T. Conell;A. J. Gold;E. M. Zola;C. L. Paule
  20. J. Controlled release v.31 A. R. Rajabi-Siahboomi;R. W. Bowtell;P. Mansfield;A. Henderson;M. C. Davies;C. D. Media
  21. J. Pharm. Sci. v.57 H. Lapidus;N. G. Lordi
  22. J. Pharm. Sci. v.86 H. Kim;F. Reza
  23. ANN. Pharm. Fr. v.44 G. Burgot;J. L. Burgot