The Kinetics of Radical Copolymerization of Styrene with Alkyl Methacrylate in a CSTR

연속반응기에서 스티렌과 메타크릴산 알킬의 라디칼 공중합 반응속도론

  • Kim, Nam Seok (Department of Chemical Technology, Chang-won National University) ;
  • Seul, Soo Duk (Department of Chemical Engineering, Dong-A University) ;
  • Cheong, Young Eon (Group Department of Environment & Chemistry, Pusan College of Information Technology) ;
  • Park, Keun Ho (Department of Chemical Technology, Chang-won National University) ;
  • Choi, Jong jueng (Department of Industrial Chemistry, Kyungnam College of Information & Technology)
  • 김남석 (창원대학교 공업화학과) ;
  • 설수덕 (동아대학교 화학공학과) ;
  • 정영언 (부산정보대학 환경화학계열) ;
  • 박근호 (창원대학교 공업화학과) ;
  • 최종정 (경남정보대학 공업화학과)
  • Received : 1999.06.18
  • Accepted : 1999.07.10
  • Published : 1999.08.10

Abstract

Solution copolymerization of styrene(St.) with methyl methacrylate(MMA), ethyl methacrylate(EMA) and n-butyl methacrylate(BMA) was carried out with benzoylperoxide(BPO) as an initiator in toluene at $80^{\circ}C$ in a continuous stirred tank reactor. Reaction volume and residence time were 0.6 liters and 3hours, respectively. The monomer reactivity ratios, $r_1(St.)$ and $r_2(RMA)$ determined by both the Kelen-Tudos method and the Fineman-Ross method were $r_1(St.)=0.60(0.61),\;r_2(MMA)=0.59(0.60);\;r_1(St.)=0.65(0.62),\;r_2(EMA)=0.55(0.52);\;r_1(St.)=0.75(0.67),\;r_2(BMA)=0.63(0.56)$. The cross-termination factor $\Phi$ of the copolymer over the entire St. compositions ranged from 0.26 to 0.96. The $\Phi$ factors of St.-RMA copolymer were increased with increasing St. content. The simulated conversions and copolymerization rates were compared with the experimental results. The average time to reach dynamic steady-state was three times and half of the residence time.

References

  1. Appl. Polym. Sci. v.25 M. C. Gupta;J. D. Nath
  2. J. Appl. Poly. Sci. v.39 S. Das;F. Rodriguez
  3. J. Appl. Poly. Sci. v.32 S. Das;F. Rodriguez
  4. ASC Symposium Series-Catalysis in Polymer Synthesis E. J. Vanderberg;J. C. Salamone
  5. Chem. Eng. Sci. v.50 J. C. Pinto;W. H. Ray
  6. Chem. Eng. Sci. v.50 J. C. Pinto
  7. Chem. Eng. Sci. v.51 S. Kiparissides
  8. Chem. Eng. Commun. v.16 K. S. Balaraman;B. D. Kulkarni;R. A. Mashelkar
  9. J. Macromol. Sci. Chem. v.A-9 T. Kelen;F. Tudos
  10. J. Polym. Sci. v.66 M. Finneman;S. D. Ross
  11. Trans. Faraday. Soc. v.49 G. M. Burnett;P. Evans;H. W. Melville
  12. Kogyo Kagaku Zasshi v.69 T. Otsu;T. Ito;M. Imoto
  13. J. Polym. Sci., Part-A1 K. Ito
  14. J. Polym. Sci. v.8 M. Morton;P. P. Salatiello;H. Landfileld
  15. J. Am. Chem. Soc. v.71 W. V. Smith
  16. J. Am. Chem. Soc. v.65 P. J. Flory
  17. Elements of chemical Reaction Engineering H. S. Fogker
  18. Polymer Hand book, (3rd. Ed.) v.Ⅱ J. Bran drup;E. H. Immergut
  19. Free Radicals in solution C. Walling
  20. J. Polym. Chem. Ed. v.16 K. Ito
  21. Polym. v.4 A. M. North
  22. Trans. Faraday. Soc. v.58 J. N. Atherton;A. M. North
  23. Macromol. Chem. Suppl. v.3 P. Wittmer