The Effect of Electrolyte on the Viscoelastic Characteristics of PPy Thin Film Using QCA

QCA를 이용한 폴리피롤 박막의 점탄성 특성에 대한 전해질 영향

  • Song, Seong-Hun (Department of Chemical Engineering, Dong-A University) ;
  • Kim, Jong-Min (Department of Chemical Engineering, Dong-A University) ;
  • Han, Dae-Sang (Department of Chemical Engineering, Dong-A University) ;
  • Park, Jin-Young (Department of Chemical Engineering, Dong-A University) ;
  • Park, Ji-Sun (Department of Chemical Engineering, Dong-A University) ;
  • Chang, Sang-Mok (Department of Chemical Engineering, Dong-A University)
  • 송성훈 (동아대학교 공과대학 화학공학과) ;
  • 김종민 (동아대학교 공과대학 화학공학과) ;
  • 한대상 (동아대학교 공과대학 화학공학과) ;
  • 박진영 (동아대학교 공과대학 화학공학과) ;
  • 박지선 (동아대학교 공과대학 화학공학과) ;
  • 장상목 (동아대학교 공과대학 화학공학과)
  • Received : 1999.06.02
  • Accepted : 1999.07.07
  • Published : 1999.08.10

Abstract

In this work, we analyzed the viscoelastic characteristics of electrochemically polymerized polypyrrole(PPy) thin film in various electrolyte solutions, $Na_2SO_4,\;Na_2CO_3$ and SDS + $NaClO_4$, using QCA. The characteristics of redox reaction of electrochemically polymerized PPy thin film for 180 sec in each electrolyte, was investigated in 0.1 M $NaClO_4$ electrolyte solution by cyclic voltammetry method. We used one side of quartz crystal electrode as a working electrode and measured the resonant frequency, resonant resistance and current as analytical parameters. As the results, we suggest that electrochemically polymerized PPy thin film in various electrolyte solutions shows tendency changing from elastic characteristics to viscoelastic one in the order of $ClO_4{^{-}}\;+\;DS^-,\;SO_4{^{-2}}$ and $CO_3{^{-2}}$.

Acknowledgement

Supported by : 학술진흥재단

References

  1. 화학공업과 기술 v.14 장상목;김영한;村松宏
  2. 導電性有機薄膜の機能と設計 山下和男;木谷日告
  3. Z. phyzik v.155 G. Sauerbrey
  4. Anal. Chim Acta. v.175 K. K. Kanazawa;J. G. Gordon Ⅱ
  5. Anal. Chem. v.60 H. Muramatsu;E. Tamiya;I. Karube
  6. J. Anal. Chem. v.36 W. H. King
  7. Anal. Chem. v.36 J. Hlavay;G. G. Guibault
  8. Anal. Chim. Acta v.131 T. Nomura;T. Nagamune
  9. J. Biomed Res. v.6 H. Shons;F. Dorman;J. Najarian
  10. Anal. Chem. v.59 H. Muramatsu;J. M. Dick;E. Tamiya;I. Karube
  11. J. Am Chem. Soc. v.104 K. Itaya;T. Ataka;S. Toshima
  12. 생물공학 News v.2 장상목;村松宏
  13. J. Electroanal. Chem. v.59 E. S. Grabbe;R. P. Buck;O. R. Melroy
  14. J. Electroanal. Chem. Interfacial Electrochem. v.280 S. Bruckenstein;M. Shay
  15. J. Am.Chem. Soc. v.111 Y. Okahata;K. Kimura;K. Ariga
  16. Anal. Chim. Acta v.386 K. J. Choi;Y. H. Kim;S. M. Chang;A. Egawa;H. Muramatsu
  17. J. Electroanal. Chem. Interfacial Electrochem. v.314 X. Ye;H. Muramatsu;K. Kimura;T. Sakuhara;T. Atake
  18. Anal. Chem. Acta. v.251 H. Muramatsu;E. Tamiya;I. Karube
  19. J. Electroanal. Chem. Interfacial Electrochem. v.322 H. Muramatsu;X. Ye;M. Suda;T. Sakuhara;T. Ataka
  20. Biosensor and Bioelectronics v.6 S. M. Chang;B. Ebert;E. Tamiya;I. Karube
  21. J. Korean Ind. Eng. Chem. v.9 장상목;김종민;박지선;손태일;Muramatsu Hiroshi
  22. Polymer v.40 J. M. Kim;S. M. Chang;H. Muramatsu
  23. Fluid Mechanics L. D. Landau;E. M. Lifshitz