Relationships between Morphologies and Properties of PA 6,6/EPM/EPM-g-MA Blends

PA 6,6/EPM/EPM-g-MA 블렌드물의 특성과 Morphology 관계

  • Lee, Yoong (Department of Chemical Engineering, College of Engineering, Dankook University) ;
  • Lee, Chang-Woo (Department of Chemical Engineering, College of Engineering, Dankook University) ;
  • Chang, Yoon-Ho (School of Chemical, Polymer & Biological Engineering, In-Ha University) ;
  • Hahm, Yeong-Min (Department of Chemical Engineering, College of Engineering, Dankook University)
  • 이융 (단국대학교 공과대학 화학공학과) ;
  • 이창우 (단국대학교 공과대학 화학공학과) ;
  • 장윤호 (인하대학교 화학.고분자.생물공학부) ;
  • 함영민 (단국대학교 공과대학 화학공학과)
  • Received : 1999.01.08
  • Accepted : 1999.06.21
  • Published : 1999.08.10


In this study, binary PA 6,6/EPM(or EPM-g-MA) blends and ternary PA 6,6/EPM/EPM-g-MA blends were fabricated according to the variation in elastomer content and composition ratio of blend, and mixing temperature and rate so as to investigate the degree of influence of elastomer content and average particle size, morphology, and distribution of dispersed elastomer on properties of blends. As results, under the constant mixing rate(250 rpm) and different five section temperature profiles(270-265-265-255-$255^{\circ}C$) in extruder, high notched Izod impact strength was the property of PA 6,6/EPM-g-MA(70/30) blend among binary blends. Notched Izod impact strength of this blend was 25 times improvement compared with that of polyamide 6,6. In addition, elastomer average particle size of ternary PA 6,6/EPM/EPM-g-MA(70/15/15) blend was $0.56{\mu}m$, which was fine distribution, and notched Izod impact strength of that blend was the highest of all blends prepared with the variation in elastomer content. But the properties of this ternary blend were decreased remarkably at the diverse mixing temperatures and mixing rates.


  1. Rubber Toughened Engineering Plastics A. A. Collyer
  2. KEPR KEP Technical Data Technical Service Team
  3. J. Mater. Sci. v.16 C. B. Bucknall;P. S. Heather;A. Lazzeri
  4. Poly. Eng. Sci. v.28 M. Xanthos
  5. J. Polymer v.30 R. J. M. Borggreve;R. Gaymans
  6. J. Polymer v.3 A. J. Oostenbrink;R. Gaymans
  7. J. Mater. Sci. v.24 F. Speroni;E. Castoldi;P. Fabbri;T. Casiraghi
  8. Polymer v.27 R. Greco;G. Lanzetta;G. Maglio;M. Malinconico;E. Martuscelli;R. Palumvo;G. Ragosta;G. Scarinzi
  9. Polym. Eng. Sci. v.24 S. Cimmino;I. D'Orazio;R. Greco;G. Maglio;M. Malinconico;M. Mancarella;E. Martuscelli;R. Palumbo;G. Ragosta
  10. J. Appl. Polym. Sci. v.39 F. L. David;L. H. William;G. M. Mark
  11. Multicomponent Polymer Systems I. S. Miles;S. Rostami
  12. Polymer v.26 S. Wu
  13. Polymer v.28 R. J. M. Borggreve;R. J. Gaymans;J. Schuijer;H. A. J. Ingen
  14. Polym. Eng. Sci. v.23 S. Y. Hobbs;R. C. Bopp;V. H. Watkins
  15. Polymer v.27 S. Cimmino;F. Coppola;L. D'Orazio;R. Greco;G. Malglio;M. Malinconico;C. Mancraella;E. Martuscelli;G. Ragosta
  16. Polymer v.33 A. J. Oshinski;H. Keskkula;D. R. Paul
  17. Polymer v.30 R. J. M. Borggreve;R. J. Gaymans;J. Schuijer