Micelle Formation of Surfactant Solution(3) -Self-Diffusion and 1H Relaxation for Mixed Micelle of Nonionic and Ionic Surfactants-

계면활성제 수용액에서 미셀형성(제3보) -비이온성과 이온성계면활성제의 혼합 미셀에 있어 자기확산 및 프로톤 이완-

  • Choi, Seung-Ok (School of Chemical Engineering, Chungbuk National University) ;
  • Kwack, Kwang-Soo (Department of Industrial and Engineering Chemistry, Chungju National University) ;
  • Park, Heung-Jo (Department of Polymer Chemistry, Chungju National University) ;
  • Nam, Ki-Dae (School of Chemical Engineering, Chungbuk National University)
  • 최성옥 (충북대학교 화학공학부) ;
  • 곽광수 (충주대학교 공업화학과) ;
  • 박흥조 (충주대학교 고분자공학과) ;
  • 남기대 (충북대학교 화학공학부)
  • Received : 1999.05.20
  • Accepted : 1999.09.01
  • Published : 1999.10.10


The surfactant self-diffusion coefficients of mixed micellar solutions of ionic and nonionic surfactants have been measured by the NMR pulsed field gradient spin echo(FT-PGSE) method. In addition, the line widths of $^1H$ NMR signal have been monitored. The system investgated are $C_{12}EO_5/SDS/D_2O$, $C_{12}EO_5/DTAC/D_2O$, and $C_{12}EO_8/SDS/D_2O$. In the sample series, the molar ratios of $D_2O$ to surfactant(ionic+nonionic) were kept constant while the surfactant mixing ratio was varied. For the $C_{12}EO_5$ system, the surfactant self-diffusion coefficient indicates minimum when the surfactant mixing ratio is about 20% ionic surfactant. The observed decrease in self-diffusion coefficients as nonionic surfactant was replaced by ionic surfactant is interpreted to mainly be due to an increased micelle-micelle repulsion. The increase in self-diffusion coefficients occurring at higher fraction of ionic surfactant is shown to be due to a decrease in micelle size. For the $C_{12}EO_8$ system, the effect of the surfactant mixing ratio is much weaker which can be understood by considering the molecular geometry and large headgroup area. The proton NMR line widths correlate well with the self-diffusion coefficients and broadening of the alkyl chain methylene signals is found when the self-diffusion coefficients is low.


$^1H$ self-diffusion;$^1H$-relaxation;FT-PGSE method


  1. J. Amer. Oil Chem. Soc. v.43 M. J. Schick;D. F. Maning
  2. Kolloid Z. Z. Polym v.239 F. Tokiwa;K. A. Aigami
  3. J. Disp. Sci. Technol v.9 G. Oetter;H. Hoffman
  4. J. Phys. Chem v.89 H. Thurn;M. Lobl;H. Hoffman
  5. J. Chem. Phys. v.42 E. O. Stejskal;j. E. Tanner
  6. J. Amer. Chem. Soci. v.23 R. E. London;J. Avitable
  7. J. Korean Ind. and Eng. Chem v.9 C. Seung-Ok;L. Jin-Hee;N. Ki-Dae
  8. Chem. Scr. v.25 P. G. Nilsson;B. Lindman
  9. Q. Rev. Biophys. v.10 H. Wennerstroma;G. Linblom
  10. J. Magn. Reson v.23 H. Wennerstroma;J. Ulmius
  11. J. Phys. Chem v.98 A. A. Sussanna;P. Stilbs
  12. Nature v.111 R. R. Balmbra;J. S. Clunie;J. F. Goodman
  13. Langmuir v.11 M. Leaver;I. Furo;U. Olsson
  14. Ber. Bunsenes. Phys. Chem. v.58 H. Hoffman
  15. J. Colloid and Interface Sci. v.65 no.1 J. Ulmius;B. Lindman;G. Lindblom;T. Drakenberg
  16. J. Che,. Phys. v.58 J. Charvolin
  17. J. Colloid Sci. v.17 P. Bech
  18. J. Chem. Phys. v.42 E. O. Stejskal;J. E. Tanner
  19. Fard. Disc. Chem. Sci. v.76 H. Rehage;H. Hoffman
  20. Mol. Cryst. Liq. Cryst. v.28 T. Bull;B. Lindman
  21. J. Colloid Interface Sci. v.30 F. Tokiwa;N. Moriyama
  22. J. Dispersion Sci. Technol. v.3 J. F. Scamehorg;R. S. Schechter;W. H. Wade
  23. Langmuir v.10 A. Blasko;C. A. Bunton
  24. Phys. Rep. v.52 H. Wennerstrom;B. Lindman
  25. Kolloid Z. Z. polym v.183 K. Ruiyama;H. Inoue
  26. Mol. Cryst. Liq. Cryst v.63 K. Fontell
  27. Faraday Soc. v.60 J. M. Corkill;J. F. Goodman;J. R. Trans