Creep of Drift Pin Moment Resisting Joint of LVL under Changing RH

상대습도 변동하의 휨 모멘트가 작용하는 단판적층재 Drift Pin 접합부의 크리프 변형 거동

  • 홍순일 (강원대학교 산림과학대학 임산공학과)
  • Published : 1999.09.01


The objective of this study was to present creep and the effects of mechano-sorptive deflection of drift pin moment resisting joint between LVL members under changing relative humidity (RH) conditions. The LVL members with steel gusset were jointed by a square pattern of eight injected drift pin. Three diameter drift pins were used to test specimens (6mm, 10mm, and 16mm). The creep test was conducted under two constant loading conditions : one at 30 kgf(840 kgf-cm) and the other at 60 kgf(1680 kgf-cm). The experiment was conducted in an open shed outside. (1)The total rotation creep model of moment resisting joing can be expressed as the sum of the creep of controlled environment (3-parameter model), dimensional change and mechano-sorptive deflection resulting from the variable environment. (2)Mechanosorptive rotation creep is recoverable as moisture content increases during adsorption. Least squares method for linear regression analysis was performed using mechano-sorptive rotation creep as the dependent variable and moisture content as the independent variable. The slope of low moment specimens are compared with those of high moment. This means that low moment condition is more easily affected by changes in humidity than high moment conditions. (3)Although creep deflection is higher for small diameter drift pin than for large diameter drift pin, the shape of creep deflection curves for all specimens is similar.