Relationship between the Organic Content, Heavy Metal Concentration and Anaerobic Respiration Bacteria in the Sediments of Shiwha-ho

시화호 저니(Sediment)에서의 유기물 및 중금속 농도와 혐기성호흡세균과의 상관관계

  • 현문식 (한국과학기술원 수질환경연구센터) ;
  • 장인섭 (한국과학기술원 수질환경연구센터) ;
  • 박형수 (한국과학기술원 수질환경연구센터) ;
  • 김병홍 (한국과학기술원 수질환경연구센터) ;
  • 김형주 (한국과학기술원 수질환경연구센터) ;
  • 이홍금 (한국해양연구소 미생물연구실) ;
  • 권개경 (한국해양연구소 미생물연구실)
  • Published : 1999.06.01


Anoxic sediments collected from Shiwha-ho area were used to find the relationship between the heavy-metal, organic content and anaerobic respiration bacteria by most probable number (MPN) method. Analysis of the sediments showed that COD content was higher in the sediments collected from Ansan-cheon and Shiwha-ho than those collected from sea area nearby. Particularly noticeable was the fact that heavy metal concentration was much higher in the sediments of Shiwha-ho area contaminated by heavy-metal, although they were rich in electron donor and electron acceptor for Fe(III)-reducing bacteria using lactate as an electron donor was in the range of 1.1$\times$106-4.6$\times$107MPNs/ml in the sediments collected from the sea-side of the lake, which were lower in heavy-methal concentration and higher in Fe-Mn content than those from other region. The number of Fe(III)-reducing bacteria using acetate as an electron donor was in the rang eof 4.3$\times$102-8.1$\times$105MPNs/ml in the same sediments. Chromate-reducing bacteria were more populated(4.6$\times$104-8.1$\times$105MPNs/ml) in the sediments contaminated by heavy metals. The number of sulfate-reducing bacteria wee counted in the sediments collected from the more contaminate inner-side than those from the sea-side of the lake.


Fe(III)-reducing bacteria;chromate-reducing bacteria;sulfate-reducing bacteria;anaerobic respiration bacteria


  1. Standard Methods for the Examination of Water and Wastewater(19th ed) APHA. American Public Health Association
  2. Biochemical engineering and Biotechnology v.12 no.1 The characteristics and utilzation of metal-reducing bacteria Kim, B.H.;H.J. Kim;M.S. Hyun
  3. Appl. Environ. Microbiol. v.54 Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilartory reduction of iron or manganese Lovely, D.R.;E.J.P. Phillips
  4. Kor. J. Appl. Microbiol. Biotechnol. v.24 no.3 Corrlation between the number of anaerobic bacteria in the sediment determined by MPN method and organics of the overlying water in the Jungnang-cheon Park, D.H.;B.H. Kim;S.K. Lim;Y.H. Choi
  5. Appl. Environ. Microbiol. v.43 Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate Sorensen, J.
  6. Sediment Microbiology Modelling the processes of organic matter degradation and nutrients recycling in sedimentary system Billen, G.;D.B. Nedwell(ed.);C. M. Brown(ed.)
  7. J. Bacteriol v.179 Cloning and sequence of cymA, a gene encoding a tetraheme cytochrome c required for reduction of iron(Ⅲ), fumarate, and nitrate by Shewanella putrefaciens MR-1 Myers, C.R.;J.M. Myers
  8. Anal. Chem. v.27 Stability of clolrmetric reagent for chromium, s-diphenylcarbazide, in various solvents Urone, P.F.
  9. The Sulphate-reducing Bacteria(2nd ed.) Postgate, J.R.
  10. Arch. Microbiol. v.131 Different ks values for hydrogen of methanogenic bacteria and sulfate-reducing bacteria:An explanation for the apparent inhibition of methanogenesis by sulfate Krisjansson, J.K.;P. Schoenheit;R.K. Thauer
  11. Appl. Environ. Microbiol. v.59 Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456 Shen, H.;Y.-T. Wang
  12. Syst. Appl. Microbiol. v.18 Ferrimonas balearica gen. nov. sp. nov. a new marine facultative Fe(Ⅲ)-reducing bacterium Rosselo-Mora, R.A.;W. Ludwing;P. Kampfer;R. Amann;K.H. Schleifer
  13. J. Bacteriol v.178 Phylogenetic analysis of dissimilatory Fe(Ⅲ)-reducing beacteria Lonergan, D.J.;H.L. Jenter;J.D. Coates;E.J.P. Phillips;T.M. Schmidt;D.R. Lovely
  14. Environ. Health Perspect v.92 The chemistry of chromium and some resulting analytical problems Shupack, S.I.
  15. Arch. Microbiol. v.165 Geovibrio ferrireducens, a phylogenetically distinct dissimilatory Fe(Ⅲ)-reducing bacterium Caccavo, F.;J.D. Coates;R.A. Rosselo-Mora;W. Ludwig;K.H. Schleifer;D.R. Lovely;M.J. Mclnerney
  16. Sediment Microbiology Microbiol activity in organically enriched marine sediments Battersby, N.S.;C.M. Brown;D. B. Nedwell(ed.);C. M. Brown(ed.)
  17. American Society for Microbiology Growth measurement. Manual of Methods for General Microbiology Koch, A. L.
  18. Soil Sci. Plant Nutr. v.9 Microbial reduction mechanism of ferric iron in Paddy soils. Part 1. Karmula, T.;Y. Takai;K. Ishikawa
  19. Adv. Microbiol Ecol. v.7 The input and mineralization of organic carbon in anaerobic aquatic sediments Nedwell, D.B.
  20. Appl. Environ. Microbiol. v.63 A rapid and simplified method for estimating sulfate reduction activity and quantifying inorganic sulfides Ulrich, G.A.;L.R. Krumholz;J.M. Suflita
  21. Syst. Appl. Microiol. v.17 Isolation and taxonomic characterization of a halotolerant, facultatively iron-reducer bacterium Rosselo-Mora, R.A.;F. Caccavo;K. Osterlehner;N. Springer;S. Spring;D. Schuler;W. Ludwing;R. Amann;M. Vanncanneyt;K.H. Schleifer
  22. J. Ind. Microbiol. v.14 Reduction of chromate by bacteria isolated from the cooling water of an electricity generating station Cooke, V. M.;M.N. Hughes;R.K. Poole
  23. Appl. Environ. Microbiol. v.55 Isolation and characterizations of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions Wang, P.-C.;T. Mori;K. Komori;M. Sasatsu;K. Toda;H. Ohtake
  24. Appl. Environ. Microbiol. v.60 Reduction of Cr(VI) by a consortium of sulfate-reducing bacteria (SRB Ⅲ) Fude, L.;B. Harris;M.M. Urrutia;T.J. Beveridge
  25. J. Ind. Microbiol. v.14 Bacterial reduction of hexavalent chromium Wang, Y.-T.;H. Shen.
  26. Appl. Environ. Microbiol. v.61 Fe(Ⅲ) and $S^0$ reduction by Pelobactor carbinolicus Lovely, D.R.;E.J.P Phillips;D.J. Lonergan;P.K. Widman
  27. Biology of Anaerobic Microorganisms Microbial reduction of Manganese and iron Ghiorse, W.C.;A.J.B. Zehnder(ed.)
  28. Soil Sci. Plant Nutr v.30 Effect of molecular hydrogen on the reduction process of submerged doil Saito, M.;H.Wada
  29. Appl. Microbiol. Biotechnol. v.33 A method for removal of toxic chromium using a chromate-reducing strain of Enterobater cloacae Komori, K.;A. Rivas;K.Toda;H.Ohtake
  30. Arch. Microbiol. v.159 Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals Lovely, D.R.;S.J. Giovannoni;D.C. White;J.E. Champine;E.J.P. Phillips;Y.A. Gorby;S. Goodwin
  31. Microbiol. Rev. v.55 Dissimilatory Fe(Ⅲ) and Mn(Ⅳ) reduction Lovely, D.R.
  32. The Prokaryotes(2nd ed.) The genera Acetogenium, Acetoanaerobium and Acetitomaculum Schink B.;M. Bomar;A. Balows(ed.);H.G. Trueper(ed.);M. Deorkin(ed.);W. Harder(ed.);K.H. Schleifer(ed.)
  33. Standard Methods for the Examination of Water and Waste-water(17th ed) APHA. American Public Health Association
  34. Wat. Res. v.24 Effect of pH and oxidation state of chromium on the behavior of chromium in the activated sludge process Imai, A.;E.F. Gloyna
  35. Appl. Environ. Microbiol. v.56 Regulation of dissimilatory Fe(Ⅲ) reduction activity in Shewanella putrefaciens Arnold, R.G.;M.R. Hoffmann;T.J. Dichristina;F.W. Picardal
  36. Arch. Microbiol v.164 Desulfuromonas palmitatis sp. nov., a marine dissimilatory Fe(Ⅲ) reducer that can oxidize long-chain fatty acids Coates, J.D.;D.J. Lonergan;E.J.P. Phillips;H. Jenter;D.R. Loveley
  37. J. Soil. Sci. v.32 Sorption of inorganic phosphate by iron- and aluminum-containing components McLaughlin, J.R.;J.C. Ryden;J.K. Syers
  38. Appl. Environ. Microbiol. v.51 Organic matter mineralization with reduction of ferric iron in anaerobic sediments Lovely, D.R.;E.J.P Phillips
  39. The sulfate-reducing bacteria. Comterporary Perspective Hansen, T. A.
  40. Environ. Sci. Technol. v.20 Diagnostic trace-metal profiles in arctic lake sediments Cornwell, J.C.
  41. Int. J. syst. Bacteriol v.45 Bacillus infernus sp. nov., an Fe(Ⅲ)- and Mn(Ⅳ)- reducing anaerobe from the deep terrestrial subsurface Boone, D.R.;Y. Liu;Z.-J. Zhao;D.L. Balkwill;g.R. Drake;T.O. Stevens;H.C. Aldrich