BIFURCATION ANALYSIS ON AN UNFOLDING OF THE TAKENS-BOGDANOV SINGULARITY

  • Han, Gil-Jun
  • Published : 1999.03.01

Abstract

A complete analysis of the equation x'=y, y'=$\beta$y-$\alpha$x2+$\alpha$x2+$\delta$xy, where $\alpha$ and $\beta$ small, describing a particular unfolding of the Takens-Bogdanov singularity is presented.

Keywords

center manifold reduction;normal form;unfolding;codimension;nilpotent singularity

References

  1. Quarterly of Applied Mathematics An Unfolding of the Takens-Bogdanov Singularity P. Hirschberg;E. Knobloch
  2. Center For Applied Mathematics A Dynamical System Toolkit with on Interactive Graphical Interface S. Kim;J. Guckenheimer
  3. Introduction to Applied Nonlinear Dynamical System and Chaos S. Wiggins
  4. J. Fluid Mech. v.108 Nonlinear periodic convection in a double-diffusive systems E. Knobloch;M. R. E. Proctor
  5. Nonlinearity v.3 Cubic Lienard Equations with Linear Damping F. Dumortier;C. Rousseau
  6. Publ. Math. IHES v.43 Singularities of Vector Fields F. Takens
  7. Applied Mathematical Sciences v.42 Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields J. Guckenheimer;P. Holmes
  8. Functional Anal. Appl. v.9 Versal deformations of a singular point on the plane in the case of zero eigenvalues R. I. Bogdanov
  9. Applied Mathematical Sciences v.35 Applications of Center Manifold Theory J. Carr