Physicochemical Properties of Insoluble Mineral Substances in Food Additives

Hee-Yun Kim, Young-Ja Lee, Ki-Hyoung Hong, Yong-Kwan Kwon, So-hee Kim, Hyun-Jong Kim, Chul-Won Lee, Kil-Saeng Kim and Sang-Hoon Lee*

Division of Natural Food Additives, Korea Food and Drug Administration,
*Technology & Research Institute of KORES

Abstract

This study was conducted to determine basic mineral compositions, chemical components, description of particle size distribution and whiteness for 32 items of insoluble mineral substances, i.e., 3 items of diatomaceous earth, 1 item of kaolin, 10 items of bentonite, 13 items of acid clay, 3 items of talc and 2 items of perlite. The chemical components and XRD (X-Ray diffractometer) for insoluble mineral substances were similar with those of the reported references except kaolin. However, whiteness was determined in 90% level for talc, diatomaceous earth and kaolin. The contents of heavy metals in insoluble mineral substances were determined as follows: Pb, nd=23.10 ppm; Cd, nd=0.67 ppm; Hg, nd=0.58 ppm; As, nd=1.42 ppm; Cu, nd=39.35 ppm. These data were significantly lower than the references.

Key words: insoluble mineral substances, diatomaceous earth, kaolin, bentonite, acid clay, talc, perlite, heavy metals, XRD

서론

최근 WTO 무역협정 체결에 따라 수입 자유화 및 식품산업의 발달로 인하여 인스턴트 식품의 소비가 급증하고 있으며, 이에 따라 식품첨가물의 수요 급격히 증가하고 있는 실정이다. 현재 우리나라는 식품첨가물 공단에 식품첨가물 559종이 수재되어 있으며, 이중 천연첨가물은 천연세소류 46종, 효소류 29종, 불용성광물성물질 6종 및 기타 86종 등 총 167종이 지정 사용되어지고 있다.

불용성광물성물질은 다양한 식품공업의 발달로 식품 제조과정중 산성백토 및 벤토나이트와 토양조성물과 유지 등의 탈취 및 탈색, 규조토와 피라트는 섭량의 정체나 매수, 위스키, 포도주, 간장 및 친물용료 등의 정제, 탈크는 간장의 여과조제 및 쵸연질에 급분입(bending power)을 주고 물성을 개선하기 위하여, 백토는 탈크와 같이 여과조제의 목적으로 널리 사용되어지고 있다.

Corresponding author: Hee-Yun Kim, Division of Natural Food Additives, Korea Food and Drug Administration, 5 Nobun-Dong, Eungpyung-Ku, Seoul 122-704, Korea

1188
에 산성백토를 여과보조제로의 식품첨가물 목록이 아닌
전감시험의 원료로서 납용한 것이 크게 사회문제화 될
에 따라 현행 식품첨가물규제에 수재되어 있는 산성
백토에 성분균열의 설계 필요성이 점차히 요구되고 있
는 실정이다.

산성백토를 포함한 페라이트, 백도토, 베토나이트 및
탈크 등은 단일 성분이 아닌 SiO₂, Al₂O₃, Fe₂O₃, CaO,
MgO, K₂O, Na₂O 및 TiO₂ 등의 다양한 화학적 조성비
로 유사하게 흔히(1)되어 있으며, 또한 이들은 산지에
따른 특성들의 차이가 있으므로 산성백토의 규격 설
정을 위하여 이들 유사 불용성광물성질물들의 종합
적인 비교 검토가 필요하다고 사료된다. 또한 무기체
료 측면에서는 이들에 대한 통반적인 연구보고(5-6)가 있
우나 식품학적 측면 즉, 식품첨가물로서 지정되어 사
용되고 있는 불용성광물성질물들에 대한 이화학적 연
구가 종합적으로 분석, 검토된 보고는 국내외 거의 없
는 실정을 감안할 때 식품위생학적 측면에서의 연구
의 필요성이 점차히 요구되고 있다고 판단된다.

따라서 본 실험에서는 식품첨가물로서 사용되어지고
있는 불용성광물성질물인 규조모 3품목, 백도토 1품
목, 베토나이트 1품목, 산성백토 1품목, 탈크 3품목
및 페라이트 2품목 등 총 32품목의 시료를 대상으로
그 기본적인 구성 광물 성상 및 화학성분 특성을 비
교 분석하고 각 시료들의 입도, 분포와 백색도 등을 측
정하였으며, 또한 본 시료 등이 식품첨가물로 사용시
가장 중요한 성분균열의 하나인 중금속(Pb, Cd, Hg,
As, Cu)에 대하여 검토하였기에 보고하고자 한다.

재료 및 방법
실험재료

시료는 국내 및 수입산을 구입하여 Table 1과 같이
규조모 3품목, 백도토 1품목, 베토나이트 1품목, 산성
백토 1품목, 탈크 3품목 및 페라이트 2품목 등 총 32
품목을 실험에 사용하였다.

측정기기중 입도분포는 Cilas Alcater사제 715 model
레이저 방사형의 미로도 분포 측정기를 사용하였고, 분
말 백색도는 Tokyo Denshoko사제 Reflectometer TC
6D를 사용하였다. 험편 구성 광물질 분석을 위한 X-
ray 희석분석기는 Rigaku사제 DMAXB형을 사용하여
Cu-Kα 타겟으로 35kF, 15mA 희석조건에서 측정하였
으며, 화학성분 분석은 습식화학분석과 Optima Model
3000 DV, I.C.P를 병용하였고 중금속 분석은 Perkin
Elmer Model 5100 A.A.A로 측정하였다.

Table 1. List of insoluble mineral substances collected
from nationwide

<table>
<thead>
<tr>
<th>Species</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid clay</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>raw material A (Korea)</td>
</tr>
<tr>
<td>2</td>
<td>raw material B (Korea)</td>
</tr>
<tr>
<td>3</td>
<td>raw material C (Korea)</td>
</tr>
<tr>
<td>4</td>
<td>product A (Korea)</td>
</tr>
<tr>
<td>5</td>
<td>product B (Korea)</td>
</tr>
<tr>
<td>6</td>
<td>product C (Korea)</td>
</tr>
<tr>
<td>7</td>
<td>product D (China)</td>
</tr>
<tr>
<td>8</td>
<td>product E (Indonesia)</td>
</tr>
<tr>
<td>9</td>
<td>product F (Indonesia)</td>
</tr>
<tr>
<td>10</td>
<td>product G (Indonesia)</td>
</tr>
<tr>
<td>11</td>
<td>product H (Indonesia)</td>
</tr>
<tr>
<td>12</td>
<td>product I (Korea)</td>
</tr>
<tr>
<td>13</td>
<td>product J (Korea)</td>
</tr>
<tr>
<td>Bentonite</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>product A (China)</td>
</tr>
<tr>
<td>2</td>
<td>raw material C (China)</td>
</tr>
<tr>
<td>3</td>
<td>product B (England)</td>
</tr>
<tr>
<td>4</td>
<td>raw material A (England)</td>
</tr>
<tr>
<td>5</td>
<td>product C (Korea)</td>
</tr>
<tr>
<td>6</td>
<td>raw material D (Korea)</td>
</tr>
<tr>
<td>7</td>
<td>raw material B (Korea)</td>
</tr>
<tr>
<td>8</td>
<td>product E (Korea)</td>
</tr>
<tr>
<td>9</td>
<td>product F (Korea)</td>
</tr>
<tr>
<td>10</td>
<td>product G (Korea)</td>
</tr>
<tr>
<td>Talc</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>product A (China)</td>
</tr>
<tr>
<td>2</td>
<td>product B (Indonesia)</td>
</tr>
<tr>
<td>3</td>
<td>product C (Japan)</td>
</tr>
<tr>
<td>Diatomaceous</td>
<td></td>
</tr>
<tr>
<td>Earth</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>product A (Korea)</td>
</tr>
<tr>
<td>2</td>
<td>product B (Korea)</td>
</tr>
<tr>
<td>3</td>
<td>product C (Korea)</td>
</tr>
<tr>
<td>Perite</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>raw material A (Japan)</td>
</tr>
<tr>
<td>2</td>
<td>raw material B (Japan)</td>
</tr>
<tr>
<td>Kaolin</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>product A (Japan)</td>
</tr>
</tbody>
</table>

중금속 함량측정

본 연구의 주목적인 불용성광물성질물의 중금속 측
정을 위한 실험용액의 조제는 미국 Food Chemicals
Codex(9)에 수재된 베토나이트를 참고로 하여 조제하였
다. Table 1의 각 시료는 에비 건조후 3.75g를 취하
여 4%(v/v) 염산 100 mL을 가하여 용해 후 여지를 사
용하여 빈은 윤속으로 여과시키고 여지 위의 잔류물
은 일량 25 mL액으로 4회 세척하였다. 얇은 여액 및
세액을 함은 다음 조용히 가열하여 약 20 mL 정도가
될 때까지 농축하였으며 첨전물이 생기면, 진산 빈 2-3
방울을 가하여 가열하고 심은 동료로 냉각시켰다. 농축액
은 50 mL플라스크에 여지를 사용하여 빈은 윤속으로
여과시키고 비어어 및 여지위의 잔류물은 물로 잘 세
척한 다음 다시 여액 및 세액을 함하여 50 mL로 정용
한 액을 사용하였다.

상기 조작에 따라 얻어진 중금속 시험용액을 Table
Table 2. The operating condition of atomic absorption spectrophotometer

<table>
<thead>
<tr>
<th>Condition</th>
<th>Element</th>
<th>Pb</th>
<th>Cd</th>
<th>Hg</th>
<th>As</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength (nm)</td>
<td>283.3</td>
<td>228.8</td>
<td>253.7</td>
<td>193.7</td>
<td>324.8</td>
<td></td>
</tr>
<tr>
<td>Lamp current (mA)</td>
<td>10</td>
<td>4</td>
<td>6</td>
<td>18</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Slit width (nm)</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>Air flow rate (L/min)</td>
<td>10</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Acetylene flow rate (L/min)</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Argon (L/min)</td>
<td>-</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

국한식품과학회지 제 31 권 제 5 호 (1999)

2의 조작조건으로 원자흡광광도법에 따라 측정하였다.

결과 및 고찰

화학성분분석

Table 3에는 총 32품목의 대상 시료중 각 광물별로 대표적인 시료 20품목(구조고 3품목, 백도로 1품목, 벤토나이트 5품목, 산성백토 6품목, 탈크 3품목 및 퍼라이트 2품목)에 대한 화학성분 분석결과 측정치를 나타낸다.

AI의 응집에 의하면 탈크는 SiO₂ 61.69%, Al₂O₃ 0.63%, Fe₂O₃ 1.96%, MgO 30.52% 및 Na₂O 0.24%, 퍼라이트는 SiO₂ 71-75%, Al₂O₃ 12-18%, Fe₂O₃ 0.5-1.5%, CaO 0.2-2% 및 K₂O 4-5%, 산성백토는 SiO₂ 60-70%, Al₂O₃ 10-20%, Fe₂O₃ 1-5%, CaO 0.5-3%, MgO 0.5-4%, K₂O 및 Na₂O 0.5-4%, 벤토나이트는 산성백토와 유사하며 모모밀로나이트가 약 90%, 나머지 10%는 장석, 황산칼슘, 석영 등으로 (MgCa)
OAl₂O₅·SiO₂·xH₂O로 표시되어 구조고는 SiO₂가 85% 
전후이며, 백도로는 SiO₂ 42-46%, Al₂O₃ 37-40%, Fe₂O₃ 0.5-0.9%, TiO₂ 0-1%, CaO 0.07%, MgO 0-
3%, K₂O 0-0.5% 및 Na₂O 0-0.6%의 조성비로 보고 
되었는데, 분석 결과 백도로를 제외하고는 모두 유사 
하게 나타났다.

물리적 특성 분석

32품목의 대상 시료중 각 광물별로 대표적인 시료 20품목(구조고 3품목, 백도로 1품목, 벤토나이트 5품목, 산성백토 6품목, 탈크 3품목 및 퍼라이트 2품목)에 대한 입도 분포는 Figs. 1-6과 같이 나타났으며, XRD 분석결과는 Figs. 1-12와 같이 얻었다.

벤토나이트 시료의 경우 모든 시료가 거의 유사한 구성을 나타내고 있는데, 모모밀로나이트의 

<table>
<thead>
<tr>
<th>SAMPLE NAME</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>TiO₂</th>
<th>P₂O₅</th>
<th>MnO</th>
<th>LOI</th>
<th>Total</th>
<th>Whiteness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaolin</td>
<td></td>
</tr>
<tr>
<td>Product A(Japan)</td>
<td>81.6</td>
<td>13.3</td>
<td>0.14</td>
<td>0.04</td>
<td>0.09</td>
<td>0.42</td>
<td>1.46</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
<td>27.1</td>
</tr>
<tr>
<td>Bentonite</td>
<td></td>
</tr>
<tr>
<td>Raw Material A(China)</td>
<td>54.9</td>
<td>14.3</td>
<td>2.48</td>
<td>3.62</td>
<td>2.94</td>
<td>2.88</td>
<td>6.01</td>
<td>0.28</td>
<td></td>
<td></td>
<td></td>
<td>0.07</td>
<td>18.9</td>
</tr>
<tr>
<td>Product B(England)</td>
<td>59.2</td>
<td>15.8</td>
<td>2.91</td>
<td>3.57</td>
<td>2.22</td>
<td>2.84</td>
<td>6.01</td>
<td>0.32</td>
<td>0.06</td>
<td>0.06</td>
<td>12.4</td>
<td>99.95</td>
<td>46.4</td>
</tr>
<tr>
<td>Raw Material A(China)</td>
<td>66.6</td>
<td>13.5</td>
<td>2.07</td>
<td>1.93</td>
<td>0.79</td>
<td>2.04</td>
<td>0.95</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
<td>11.8</td>
</tr>
<tr>
<td>Product C(Korea)</td>
<td>65.3</td>
<td>12.8</td>
<td>2.11</td>
<td>1.89</td>
<td>1.19</td>
<td>2.03</td>
<td>1.01</td>
<td>0.18</td>
<td>0.02</td>
<td></td>
<td></td>
<td>0.02</td>
<td>13.4</td>
</tr>
<tr>
<td>Acid Clay</td>
<td></td>
</tr>
<tr>
<td>Raw Material A(Korea)</td>
<td>63.1</td>
<td>12.4</td>
<td>3.26</td>
<td>1.15</td>
<td>2.19</td>
<td>1.22</td>
<td>0.73</td>
<td>0.84</td>
<td></td>
<td></td>
<td></td>
<td>0.03</td>
<td>15.1</td>
</tr>
<tr>
<td>Product C(Korea)</td>
<td>58.8</td>
<td>10.5</td>
<td>3.21</td>
<td>3.19</td>
<td>5.02</td>
<td>1.32</td>
<td>0.92</td>
<td>1.15</td>
<td>0.06</td>
<td>0.02</td>
<td>15.7</td>
<td>99.89</td>
<td>21.1</td>
</tr>
<tr>
<td>Product D(China)</td>
<td>68.4</td>
<td>10.5</td>
<td>2.02</td>
<td>1.28</td>
<td>0.39</td>
<td>0.55</td>
<td>0.95</td>
<td>0.26</td>
<td></td>
<td></td>
<td></td>
<td>0.02</td>
<td>15.5</td>
</tr>
<tr>
<td>Product F(Indonesia)</td>
<td>66.5</td>
<td>9.01</td>
<td>2.56</td>
<td>1.56</td>
<td>0.46</td>
<td>0.18</td>
<td>0.51</td>
<td>0.89</td>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
<td>18.2</td>
</tr>
<tr>
<td>Product H(Indonesia)</td>
<td>67.6</td>
<td>9.01</td>
<td>1.85</td>
<td>1.19</td>
<td>0.63</td>
<td>0.4</td>
<td>0.42</td>
<td>0.64</td>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
<td>18.1</td>
</tr>
<tr>
<td>Product E(Indonesia)</td>
<td>65.9</td>
<td>7.26</td>
<td>2.36</td>
<td>1.21</td>
<td>0.55</td>
<td>0.15</td>
<td>0.59</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
<td>20.5</td>
</tr>
<tr>
<td>Talc</td>
<td></td>
</tr>
<tr>
<td>Product C(Japan)</td>
<td>61.3</td>
<td>0.54</td>
<td>0.57</td>
<td>32.5</td>
<td>32.5</td>
<td>26.2</td>
<td>0.11</td>
<td>0.03</td>
<td>0.01</td>
<td></td>
<td></td>
<td>0.01</td>
<td>4.52</td>
</tr>
<tr>
<td>Product B(Indonesia)</td>
<td>57.4</td>
<td>0.37</td>
<td>0.56</td>
<td>31.6</td>
<td>1.93</td>
<td>0.49</td>
<td>0.05</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.07</td>
<td>7.45</td>
<td>99.89</td>
</tr>
<tr>
<td>Product A(China)</td>
<td>56.9</td>
<td>0.31</td>
<td>0.06</td>
<td>32.2</td>
<td>0.68</td>
<td>0.34</td>
<td>0.07</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>8.31</td>
<td>99.99</td>
</tr>
<tr>
<td>Perlite</td>
<td></td>
</tr>
<tr>
<td>Raw Material A(Japan)</td>
<td>75</td>
<td>16</td>
<td>0.3</td>
<td>0.3</td>
<td>1.0</td>
<td>4.0</td>
<td>2.5</td>
<td>0.1</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>99.4</td>
<td>65.4</td>
</tr>
<tr>
<td>Raw Material B(Japan)</td>
<td>74</td>
<td>16</td>
<td>0.6</td>
<td>0.4</td>
<td>1.2</td>
<td>3.8</td>
<td>3.0</td>
<td>0.1</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>99.3</td>
<td>15.5</td>
</tr>
<tr>
<td>Diatomaceous Earth</td>
<td></td>
</tr>
<tr>
<td>Product C(Korea)</td>
<td>89.6</td>
<td>4.0</td>
<td>1.5</td>
<td>0.7</td>
<td>0.8</td>
<td>0.6</td>
<td>0.9</td>
<td>0.2</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>99.7</td>
</tr>
<tr>
<td>Product A(Korea)</td>
<td>89.6</td>
<td>4.0</td>
<td>1.3</td>
<td>0.6</td>
<td>0.5</td>
<td>0.8</td>
<td>1.2</td>
<td>0.2</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>99.6</td>
</tr>
<tr>
<td>Product B (Korea)</td>
<td>91.1</td>
<td>4.0</td>
<td>1.3</td>
<td>0.6</td>
<td>0.5</td>
<td>0.5</td>
<td>0.7</td>
<td>0.2</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>99.3</td>
</tr>
</tbody>
</table>
산성백토 시료의 경우 중국산 산성백토 이외에는 몬모리아나이트계 점토광물로의 변성이 아닌 백도토계 점토광물로의 변성 경향이 강하여, 백도토계의 함수 알루미노 실리케이트 점토광물은 주 구성광물로 하고, 석영(quartz), 장석(feldspar) 등이 기타 잔류 광물로 다양 존재하고 있는 점을 특징으로 하는 광물 성질을 보여 주고 있다. 한편 상기한 벨토이트와 동일하게 백색 도가 나쁘고, 굽은 입자들로 형성되어 있는 점(Dₗ=15-30 μm)등이 실제 식품첨가물로서 이용에는 많은 전처리 공정이 필요하다라 생각된다.

백도토 시료의 경우 실험에 이용된 제품의 경우 화학성분분석 결과와 XRD분석결과에 의하면 SiO₂ 함량이 극단적으로 높고, kaolinite가 진행되기 이전의 모양인 quartz 및 feldspar 함유량이 높은 점들에서 완벽한
Fig. 7. XRD patterns of Acid Clay.

Fig. 8. XRD patterns of Perlite.

Fig. 9. XRD patterns of Bentonite.

Fig. 10. XRD patterns of Diatomaceous Earth.

고령토광물이 아닌 도식류동에 가까운 특성을 보여주고 있다(1,9).

피라이트 시료의 경우, 친연에서 조성된 유리질 실리카원으로서 비교적 적은 분산 광물 및 분산 성분 함유량과, 또 그에 따른 높은 백색도 특성치를 보이고 있는 반면에, recrystallization D_{50}=30-100 μm 이에 따르면 조성이 필요하리라 여겨진다.

규조토 시료의 경우 실험에 이용된 제품은 화학성 분석 결과, 백색도 측정치, XRD 분석 결과 등에서 다양한 고용량의 불용성 광물성 물질로서의 특성치를 보이고 있으나, 각 제품별 백색도 분포치 차이가 컸다.
제품별, 용도별로 선택 사항이 요구된다.

알크 시료의 경우, 모든 분석 결과에서 볼 수 있도록 고순도·고품질의 미림 분체로서의 요구 특성을 가 장 이상적으로 보여주고 있는 바, 실제 식품첨가물로 사용시의 물리적 특성상의 큰 문제점은 없을 것으로 생각되지만.

중금속 분석

분석대상 불용성광물성질물 중 32품목에 대한 중금 속의 분석 결과는 Table 4-8과 같이 언어졌다.

Table 4. Lead contents of various insoluble mineral substances

<table>
<thead>
<tr>
<th>sample</th>
<th>No. of sample</th>
<th>Min. value (ppm)</th>
<th>Max. value (ppm)</th>
<th>Mean value± SD (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid clay</td>
<td>13</td>
<td>3.84</td>
<td>23.10</td>
<td>13.67±5.62</td>
</tr>
<tr>
<td>Bentonite</td>
<td>10</td>
<td>4.04</td>
<td>18.47</td>
<td>7.11±4.72</td>
</tr>
<tr>
<td>Talc</td>
<td>3</td>
<td>nd²</td>
<td>4.25</td>
<td>2.38±1.50</td>
</tr>
<tr>
<td>Diatomaceous Earth</td>
<td>3</td>
<td>nd</td>
<td>0.86</td>
<td>0.85±0.02</td>
</tr>
<tr>
<td>Kaolin</td>
<td>1</td>
<td>2.81</td>
<td>3.80</td>
<td>3.22±0.57</td>
</tr>
<tr>
<td>Perlite</td>
<td>2</td>
<td>nd</td>
<td>2.22</td>
<td>1.53±0.80</td>
</tr>
</tbody>
</table>

¹average of triplicate
²not detected

Table 5. Cadmium contents of various insoluble mineral substances

<table>
<thead>
<tr>
<th>sample</th>
<th>No. of sample</th>
<th>Min. value (ppm)</th>
<th>Max. value (ppm)</th>
<th>Mean value± SD (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid clay</td>
<td>13</td>
<td>nd²</td>
<td>0.67</td>
<td>0.19±0.16</td>
</tr>
<tr>
<td>Bentonite</td>
<td>10</td>
<td>0.1</td>
<td>0.54</td>
<td>0.24±0.13</td>
</tr>
<tr>
<td>Talc</td>
<td>3</td>
<td>nd</td>
<td>0.33</td>
<td>0.15±0.12</td>
</tr>
<tr>
<td>Diatomaceous Earth</td>
<td>3</td>
<td>nd</td>
<td>0.13</td>
<td>0.09±0.04</td>
</tr>
<tr>
<td>Kaolin</td>
<td>1</td>
<td>nd</td>
<td>nd</td>
<td>nd±0.00</td>
</tr>
<tr>
<td>Perlite</td>
<td>2</td>
<td>0.52</td>
<td>0.59</td>
<td>0.56±0.03</td>
</tr>
</tbody>
</table>

¹average of triplicate
²not detected

남(Pb)은 6,000년 전부터 사용되어 왔으며, 지각에는 약 16 mg/kg, 토양에는 약 10 mg/kg가 포함되어 있다고 한다(16). 남에 의한 식품오염은 인간활동이 있는 한 브가격을 임으로 모든 식품에 자연적으로 존재하거나 가 공공장에서 오염되기도 한다. 분석 대상 시료인 불용성광물성질물들의 남 보호지는 Table 5와 같다. 산성 백토는 13품목에서 평균 13.67 ppm, 베토나이트는 10 품목에서 평균 7.31 ppm, 달크는 3품목에서 평균 2.38 ppm, 규조토는 평균 0.85 ppm, 베토나이트는 1품목에서 평균 3.22 ppm 및 처리트는 2품목에서 평균 1.15 ppm 이 검출되었다. 이는 현재 식품첨가물공장에는 남 규 격이 베토나이트 40ppm, 달크 10ppm, 규조토 10 ppm 및 처리트 10ppm으로 설정되어 있어 이들 불 용성광물성질물을 현행 사용기준에 따라 사용한다면 문제가 없을 것으로 생각된다.

카드뮴(Cd)은 1968년 일본에서 발생하여 신경질, 뇌 다중 및 면역학을 유발(17)한 이따이타이역병의 원인 물질로서 남려 알려져 있으며, 카드뮴은 일반적으로 주 로 식품으로부터 인체에 이행되며, 일반적인 화수 섭취량은 10-50μg/kg으로 보고(18) 되어지고 있다. 분석 대상 시료인 불용성광물성질물들의 카드뮴 분석지는 Table 5과 같다. 산성백토는 13품목에서 평균 0.25
Table 6. Mercury contents of various insoluble mineral substances

<table>
<thead>
<tr>
<th>sample</th>
<th>No. of sample</th>
<th>Min. value (ppm)</th>
<th>Max. value (ppm)</th>
<th>Mean value ± SD (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid clay</td>
<td>13</td>
<td>0.01</td>
<td>0.58</td>
<td>0.29 ± 0.18</td>
</tr>
<tr>
<td>Bentonite</td>
<td>10</td>
<td>nd</td>
<td>0.14</td>
<td>0.03 ± 0.04</td>
</tr>
<tr>
<td>Talc</td>
<td>3</td>
<td>nd</td>
<td>0.04</td>
<td>0.03 ± 0.02</td>
</tr>
<tr>
<td>Diatomaceous Earth</td>
<td>3</td>
<td>nd</td>
<td>0.01</td>
<td>0.01 ± 0.00</td>
</tr>
<tr>
<td>Kaolin</td>
<td>1</td>
<td>nd</td>
<td>0.01</td>
<td>0.01 ± 0.00</td>
</tr>
<tr>
<td>Perlite</td>
<td>2</td>
<td>nd</td>
<td>0.02</td>
<td>0.02 ± 0.00</td>
</tr>
</tbody>
</table>

*average of triplicate
*not detected

Table 7. Arsenic contents of various insoluble mineral substances

<table>
<thead>
<tr>
<th>sample</th>
<th>No. of sample</th>
<th>Min. value (ppm)</th>
<th>Max. value (ppm)</th>
<th>Mean value ± SD (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid clay</td>
<td>13</td>
<td>0.06</td>
<td>0.07</td>
<td>0.32 ± 0.30</td>
</tr>
<tr>
<td>Bentonite</td>
<td>10</td>
<td>0.01</td>
<td>1.42</td>
<td>0.19 ± 0.40</td>
</tr>
<tr>
<td>Talc</td>
<td>3</td>
<td>nd</td>
<td>0.03</td>
<td>0.02 ± 0.01</td>
</tr>
<tr>
<td>Diatomaceous Earth</td>
<td>3</td>
<td>0.03</td>
<td>0.21</td>
<td>0.11 ± 0.06</td>
</tr>
<tr>
<td>Kaolin</td>
<td>1</td>
<td>0.04</td>
<td>0.05</td>
<td>0.04 ± 0.01</td>
</tr>
<tr>
<td>Perlite</td>
<td>2</td>
<td>0.01</td>
<td>0.03</td>
<td>0.01 ± 0.01</td>
</tr>
</tbody>
</table>

*average of triplicate
*not detected

Table 8. Copper contents of various insoluble mineral substances

<table>
<thead>
<tr>
<th>sample</th>
<th>No. of sample</th>
<th>Min. value (ppm)</th>
<th>Max. value (ppm)</th>
<th>Mean value ± SD (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid clay</td>
<td>13</td>
<td>nd</td>
<td>39.35</td>
<td>8.33 ± 12.4</td>
</tr>
<tr>
<td>Bentonite</td>
<td>10</td>
<td>nd</td>
<td>12.32</td>
<td>3.15 ± 3.22</td>
</tr>
<tr>
<td>Talc</td>
<td>3</td>
<td>nd</td>
<td>0.97</td>
<td>0.56 ± 0.46</td>
</tr>
<tr>
<td>Diatomaceous Earth</td>
<td>3</td>
<td>2.30</td>
<td>2.18 ± 0.16</td>
<td></td>
</tr>
<tr>
<td>Kaolin</td>
<td>1</td>
<td>1.12</td>
<td>1.12 ± 0.00</td>
<td></td>
</tr>
<tr>
<td>Perlite</td>
<td>2</td>
<td>0.43</td>
<td>0.33 ± 0.09</td>
<td></td>
</tr>
</tbody>
</table>

*average of triplicate
*not detected

ppm, 베토나이트는 10목에서 평균 0.24 ppm, 탈크는 3목에서 평균 0.15 ppm, 규조토는 평균 0.09 ppm, 백도토는 1목에서 nd 및 파라이트는 2목에서 평균 0.56 ppm이 검출되었다.

수은(Hg)은 오래 전부터 화장품, 의약품, 도료 등에 사용되어온 금속으로서 WHO의 자료에 의하면 식품에서 무기형태로 존재하는 수은 함량은 20μg/kg이 며 1(1) 식품을 통해 사람이 섭취하는 수은량은 하루 0.05 -0.02 mg이라고 알려져 있다(5). 분석 대상 시료인 불용성광물성질들의 수은 분석치는 Table 6과 같다. 산성백토는 13목에서 평균 0.29 ppm, 베토나이트는 10목에서 평균 0.03 ppm, 탈크는 3목에서 평균 0.03 ppm, 규조토는 평균 0.01 ppm, 백도토는 1목에서 0.01 ppm 및 파라이트는 2목에서 평균 0.02 ppm이 검출되었다.

비소(As)는 지구상에 존재하는 동체 화학조직에 다양하게 존재되어 있으며, 대부분의 식품은 비소가 함유되어 있다. 오염되지 않은 식품을 섭취하더라도 1일 약 0.5 mg을 섭취하는 것으로 알려져 있으며, 대부분의 식품에는 1mg/kg의 수준보다도 비소가 함유되어 있다고 보고되어 있다(16). 분석 대상 시료인 불용성광물성질들의 비소 분석치는 Table 7과 같다. 산성백토는 13목에서 평균 0.32 ppm, 베토나이트는 10목에서 평균 0.19 ppm, 탈크는 3목에서 평균 0.02 ppm, 규조토는 평균 0.11 ppm, 백도토는 1목에서 0.04 ppm 및 파라이트는 2목에서 평균 0.01 ppm이 검출되었다. 이는 현행 식품첨가물규제에는 비소 규격이 베토나이트 4 ppm, 탈크 4 ppm, 규조토 10 ppm, 백도토 4 ppm 및 파라이트 4 ppm으로 설정되어 있어 이들 불용성광물성질들을 현행 사용기준에 따라 사용한다면 문제가 없을 것으로 생각된다.

구리(Cu)는 모든 금속 중 고대로부터 인간에게 의해 가장 많이 이용되고 있는 금속중 하나로서 전 세계적으로 점차 지적자에 접해게 분포되어 있으며, 분석 대

상 시료인 불용성광물성질들의 구리 분석치는 Table 8과 같다. 산성백토의 경우 13목에서 평균 8.33 ppm, 베토나이트는 10목에서 평균 3.15 ppm, 탈크는 경우 3목에서 평균 0.56 ppm, 규조토는 평균 2.16 ppm, 백도토의 경우 1목에서 1.12 ppm 및 파라이트는 2목에서 평균 0.33 ppm이 검출되었다.

이상에서 살펴본 바와 같이 분석대상 불용성광물성질들의 경우(Zn, Cd, Hg, As 및 Cu) 분석결과는 매우 낮은 수치이며, 특히 산성백토의 성분규격 설정 시 미국 Food Chemicals Codex에서 제재된 베토나이트를 참고로 하여 검토중인 비소 4 ppm, 난 40 ppm을 비교하여 볼 때, 본 실험의 분석치는 매우 안정한 수치이다. 또한 식품첨가물로서의 이들 불용성광물성질들은 식품의 원료로서 직접 청조되어지는 것이 아니므로 물취, 탈색 및 여과조제 등의 목적으로 사용되지는 것이기 때문에 현행 사용기준에 준하여 필요에 불가결한 경우에만 한하여 사용한다면 식품안전성 측면에서 문제가 없는 것으로 판단되었다.

요 약

식품첨가물로서 사용되어지고 있는 불용성광물성
식품첨가물중 불용성광물질의 물리화학적 특성

필인 규조토 3품목, 백도토 1품목, 비토나이트 10품목, 산성백토 13품목, 탈크 3품목 및 퍼라이트 2품목 등 총 32품목의 시료를 대상으로 그 기본적인 구성 광물 성상 및 화학성분 특성을 비교 분석하고 각 시료들의 입도 분포와 백색도 등을 측정하였다. 분석 대상 시료인 불용성광물성분들의 화학성분 분석 및 XRD (X-Ray Diffractometer) 분석결과는 백도토를 제외한 모든 불용성광물성분들은 그 화학적 조성비가 보고된 문헌에서와 같이 일치하였으며, 다만 백색도는 탈크, 규조토 및 백도토의 경우에만 90% 수준으로 측정되었 다. 분석대상 불용성광물성분들에 대한 중금속의 분석 결과는 납(Pb)은 nd-23.10 ppm, 카드뮴(Cd)은 nd-0.67 ppm, 수은(Hg)은 nd-0.58 ppm, 비소(As)는 nd-1.42 ppm 및 구리(Cu)는 nd-39.35 ppm이 검출되었다. 이들 분석대상 불용성광물성분들의 중금속 분석결과는 기 준에 비해 낮은 수치이다.

문헌