Cell cycle evaluation of granulosa cells in the $\gamma$-irradiated mouse ovarian follicles

감마선에 조사된 생쥐 난포 과립세포의 세포주기 분석

  • Published : 1999.03.30

Abstract

This study was carried out to evaluate the biochemical and morphological effects of ionizing radiation on mouse ovarian follicles. Immature mice (ICR, 3 week-old) were irradiated with a dose of $LD_{80(30)}$ at KAERI. The ovaries were collected after 6 hours, 12 hours, 1 day, and 2 days post irradiation. With the morphological basis of the histological staining with hematoxylin-eosin, immunohistochemical preparation using in situ 3'-end labeling was evaluated. Flowcytometric evaluation of DNA extracted from the whole ovary was performed. The percentage of $A_0$ (subpopulation of cells with degraded DNA and with lower DNA fluorescence than $G_0/G_1$ cells), apoptotic, cells in the cell cycle was significantly higher in the irradiated group than in the control group. The number of in situ 3'-end labeled follicles increased at 6 hours post irradiation. All the analyses represented that the ionizing radiation-induced follicular atresia was taken place via an apoptotic degeneration. Such a degeneration underwent very fast and acutely. Therefore, it is concluded that the radiation-induced follicular degeneration is, like the spontaneous atresia, mediated by an acute apoptosis of follicular granulosa cells. Flowcytometric evaluation of cell cycles can make the role for quantifying the atretic follicles and understanding the mechanism of the radiation-induced cell death.