Graft Copolymerization of Chitosan and Mono(2-methacryloyl oxyethyl) Acid Phosphate and Its Antifungal Effect

키토산과 모노(2-메타크릴로일 옥시에틸)산 포스페이트 그라프트공중합과 그의 항균효과

  • Jung, Byung-Ok (Department of Food Science & Technology, Seoul National University) ;
  • Chung, Suk-Jin (Department of Food Science & Technology, Seoul National University) ;
  • Chung, Tak-Sang (Department of Chemical Engineering, Seoul National University of Technology) ;
  • Lee, Young-Moo (Department of Industrial Chemistry, Hanyang University) ;
  • Choi, Kyu-Suk (Department of Industrial Chemistry, Hanyang University) ;
  • Kim, Jae-Jin (Biomaterial Research Center, Division of Polymer Science and Engineering, KIST) ;
  • Han, Seung-Hee (Department of Chemical Engineering, Kwangwoon University)
  • 정병옥 (서울산업대학교 식품공학과) ;
  • 정석진 (서울산업대학교 식품공학과) ;
  • 정택상 (서울산업대학교 화학공학과) ;
  • 이영무 (한양대학교 공과대학 공업화학과) ;
  • 최규석 (한양대학교 공과대학 공업화학과) ;
  • 김재진 (한국과학기술연구원 고분자연구부 생체재료연구센타) ;
  • 한승희 (광운대학교 화학공학과)
  • Received : 1998.06.29
  • Accepted : 1998.07.24
  • Published : 1998.11.10


New type of chitosan deriertives was synthesised by graft copolymerization of mono(2-methacryloyl oxyethyl) acid phosphate into chitosan. The reaction conditions showing the highest percentage of grafting were an initiator concentration of $3.5{\times}10^{-3}M$, monomer concentration of 0.19 M, and reaction temperature of $40^{\circ}C$, while rate of grafting showed same value after elapsing 4hours of reaction time. The antifungal activity of chitosan depending on content of free amine and kind of monomer was examined against Candida albicans, Trichophyton rubrum and Trichophyton uiolaceum by shake flask method. The pH value of buffer solution to show the highest antifungal activity was 5.75, and the selectivity of mold strain was observed.


  1. Chitin R. A. A. Muzzarelli
  2. Proc. 1st Conf. Chitin/Chitosan R. A. A. Muzzarelli;E. R. Pariser
  3. Proc. 2nd Conf. Chitin/Chitosan S. Hirano;S. Tokura
  4. Chitosan and Related Enzyme J. P. Zikakis
  5. 化學と生物 v.21 平野茂博
  6. Chem. Pharm. Bull. v.33 W. M. Hou;S. Miyazari;M. Takoda
  7. J. Biomed Mat. Res. v.19 S. Hirano;Y. Noisiki
  8. J. Appl. Polym. Sci. v.24 K. Kojima;M. Yoshikuni;T. Suzuki
  9. Food Product Development v.11 M. A. Bough
  10. J. Biomater. Sci. Polymer Edn. v.4 W. Li;Z. Li;W. Liao;X-D. Feng
  11. Exp. Mycol. v.3 C. R.Allan;L. A. Hadwiger
  12. Exp. Mycol. v.8 D. F. Kendra;L. a. Hadwiger
  13. Food Chemical v.2 Y. Uchida
  14. Polym Adv. Technol. v.8 C. H. Kim;S. Y. Kim;K. S. Choi
  15. Polym Bull. v.38 C. H. Kim;J. W. Choi;H. J. Chun;K. S. Choi
  16. J. of Food Hygiene and Safety v.10 J. Y. song;I. H. Kim;D. H. Chung
  17. J. Appl. Polym. Sci. v.28 S. Mima;M. Miya;R. Iwamoto;S. Yoshikawa
  18. J. Polym. Sci. v.21 I. Goni;M. Gurruchaga;M. Valeru;G. M. Guzman
  19. J. Food Protection v.57 S. W. Fang;C. F. LI;D. Y. C. Shin
  20. Polymer-Publication Conference Fraft Polymerization and Its Application H. Ide
  21. Appl. Microbial. v.11 F. J. Post;G. B. Knihnmutry;M. D. Flanagan
  22. Microbial Cell Wall Synthesis and Autolysis M. G. Shepherd(et. al.);C. Nombela(ed.)
  23. Mocrobioloy Principles and Application J. G. Greager;J. G. Black;V. E. Davison