Catalytic Combustion of Soot Particulate over Perovskite-Type Oxides

폐롭스카이트형 촉매에서 입자상물질의 촉매연소반응

  • Yang, Jin-Sup (Department of Chemical Engineering, Pukyong National University) ;
  • Hong, Seong-Soo (Department of Chemical Engineering, Pukyong National University) ;
  • Jung, Duck-Young (Department of Environmental Engineering, Pusan National University) ;
  • Oh, Kwang-Jung (Department of Environmental Engineering, Pusan National University) ;
  • Cho, Kyung-Mok (Metallurgical Engineering, Pusan National University) ;
  • Ryu, Bong-Ki (Material Engineering, Pusan National University) ;
  • Park, Dae-Won (Chemical Engineering, Pusan National University)
  • 양진섭 (부경대학교 공과대학 화학공학과) ;
  • 홍성수 (부경대학교 공과대학 화학공학과) ;
  • 정덕영 (부산대학교 환경공학과) ;
  • 오광중 (부산대학교 환경공학과) ;
  • 조경목 (부산대학교 금속공학과) ;
  • 류봉기 (부산대학교 재료공학과) ;
  • 박대원 (부산대학교 화학공학과)
  • Received : 1998.02.26
  • Accepted : 1998.07.13
  • Published : 1998.11.10

Abstract

We have studied the catalytic combustion of soot particulate over perovskite-type oxides prepared by malic acid method. The catalysts were modified to enhance the activity by substitution of metal into A or B site of perovskite oxide. In addition, the reaction conditions, such as temperature, $O_2$ concentration, space velocity have been studied. The effect of $SO_2$ pretreatment and water introduced into reactants were also examined. In the $LaCoO_3$ catalyst, the partial substitution of alkali metals into A site enhanced the catalytic activity in the combustion of soot particulate and the activity was shown in the order : Cs>K>Na; In the $La_{0.6}Cs_{0.4}CoO_3 $; catalyst, the substitution of Fe or Mn showed no effect on the ignition temperature. The ignition temperature decreased with increasing $O_2$ concentration and contact time. The introduction of water into reactants feed decreased the ignition temperature and the pretreatment of $SO_2$ showed no effect on the catalytic activity.

References

  1. Chemical Week v.22 Heller
  2. Appl. Catal. v.70 M. Iwamoto(et al.)
  3. Appl. Catal. v.70 M. Iwamoto(et al.)
  4. Catalytic Air Pollution Controll R. M. Heck;R.J. Farrauto
  5. SAE 922330 R. Beckmann;W. Engeler;E. Mueller
  6. SAE 932720 R. J. Farrauto;K.E. Voss;R. J. Heck
  7. SAE 932958 I. Fukano;K. Sugawara;K. Sasaki;T. Hinjou
  8. SAE 940240 K. Voss;K. Kibe;C. Hirt;R. Farauto
  9. SAE 950157 K. Narusawa;S. Hori;T. Abe
  10. Science v.171 W. F. Libby
  11. Catal. Today v.27 Y. Teraoka;K. Nakano;W.F. Shangguan;S. Kagawa
  12. Kor. J. of Chem. Eng. v.14 S. S. Hong;G. D. Lee;J. W. Park;D. W. Park;K. M. Cho;K. W. Oh
  13. Fuel v.62 D. W. McKee
  14. Appl. Catal. B v.1 J. van Doorn;J. Varloud;V. Perrichon
  15. Appl. Catal. B v.8 J. P. A. Neeft(et al.)
  16. Bull. Chem. Soc. Jpn. v.55 T. Nakamura;M. Misono;Y. Yoneda
  17. J. Kor. Ind. & Eng. Chem. v.7 H. D. Moon;H. I. Lee
  18. Science v.177 R. J. H. Voorhoeve;J. P. Remeika;P. E. Freeland;B. T. Matthias
  19. Advaned material in catalysis R. J. H. Voorhoeve
  20. Catal Today v.8 N. Yamazoe;Y. Teraoka
  21. carbon v.27 A. F. Ahlstrom;C. U. I. Odenbrand
  22. Thermochim Acta v.162 P. Ciambelli(et al.)
  23. Energy & Fuels v.7 H. Yamashita;H. Yamada;A. Tomita;Kyotani;R. Helferich
  24. J. Mat. Sci. Lett. v.5 Y. Watanabe;S. Miyazaki;T. Maruyana;Y. Saito
  25. Kinet. Kata v.28 M. Y. Sultanov;I. S. Al'tshel;Z. Z. Makhmudova