Reaction Kinetics between a Cycloaliphatic Diisocyanate(H12MDI) and n-Hexanol

환상지방족 Isocyanate(H12MDI)와 n-Hexanol의 반응속도론

  • Kim, Taehoon (Department of Chemical Engineering, Pusan National University) ;
  • park, Sungyurb (Department of Chemical Engineering, Pusan National University) ;
  • Park, Sunghoon (Department of Chemical Engineering, Pusan National University)
  • 김태훈 (부산대학교 공과대학 화학공학과) ;
  • 박성엽 (부산대학교 공과대학 화학공학과) ;
  • 박성훈 (부산대학교 공과대학 화학공학과)
  • Received : 1998.07.28
  • Accepted : 1998.09.14
  • Published : 1998.12.10


Reaction kinetics between 4,4'-dihexyl methane diisocyanate($H_{12}MDI$) and n-hexanol in toluene with dibutyltin dilaurate(DBTDL) as catalyst was studied by experimental measurements and mathematical modeling. Experiments were carried out at various temperatures, catalyst concentrations and [NCO]/[OH] ratios, and the reaction kinetics were described by two second-order reactions, the one between NCO and OH leading to urethane and the other between urethane and NCO leading to allophanate. The rate constants were estimated by the Runge-Kutta 4th-order method. Experiments and mathematical simulations showed a good agreement for various experimental conditions. The [allophanate]/[urethane] ratios at 90% conversion of initial NCO were estimated to be over 20% for most conditions employed in the present study, indicating that allophanate formation might significantly affect the properties of urethane polymers.


Grant : 지역센터 지원과제

Supported by : 한국생산기술연구원


  1. Polyurethane: Chemistry and Technology, High Polymer Series, XVI J. S. Saunders;K. C. Frisch
  2. Organic Chemistry of Synthetic High Polymers R. W. Lenz
  3. Polyurethane Elastomers C. Hepburn
  4. Block Copolymers D. C. Allport;W. H. Janes
  5. J. Polym Sci. v.45 D. J. Lyman
  6. J. Polym Sci., Polym. Chem v.13 G. Anzuino;A. Pirro;G. Rossi;L. Polo Friz
  7. J. Appl. Polym. Sci. v.30 I. Yilgor;J. E. McGrath
  8. Makromol. Chem v.179 I. Yilgor;E. H. Orhan;B. M. Baysal
  9. Kinetikai Kataiiz. v.6 R. P. Tiger;S. G. Enteils
  10. J. Am. Chem. Soc. v.80 S. Ephraim;A. E. Woodword;R. B. mesrobian
  11. J. Phys. Chem v.72 A. E. Oberth;R. S. Bruenner
  12. J. Chem. Soc. Perkin Trans v.II R. B. Moodie;P. J. Sansom
  13. J. Polym. Sci. v.45 D. J. Lyman
  14. J. App. Polym. Sci. v.47 M. Ganbiroza-Jukic;Z. Gomzi;J. Mencer
  15. J. Polym. Sci., Polym. Chem. v.25 M. C. Chang;S. A. Chen
  16. Ind. Eng. Chem. v.51 H. L. Heiss;F. P. Combs;P. G. Gemeinhardt;J. H. Saunders;E. E. Hardy
  17. Kunststpffe v.55 G. Braun;D. Laurer
  18. Makromol. Chem v.78 M. Sumi;Y. Chokki;Y. Nakai;M. Nakabayashi;J. Kanzawa
  19. Makromol. Chem v.98 H. Okutto
  20. Ber. v.4 A. W. Hofmann
  21. J. Chem. Soc. J. W. Baker;J. B. Holdworth
  22. J. Chem. Soc. v.9 J. W. Baker;J. Gaunt
  23. J. Chem. Soc. v.27 J. W. Baker;J. Gaunt
  24. Polymer(Korea) v.15 Y. M. Lee;B. K. Kim;Y. J. Shin
  25. An Introduction To Numerical Methods For Chemical Engineers(2nd edition) James B. Riggs
  26. Analytical Chemistry of Polyurethanes, high Polymer Series v.XVI D. J. David;H. B. Staley