Preparation of YBa2Cu3O6+x Superconducting Wires Prepared by Pyrophoric Synthetic Technique

발화합성법에 의한 YBa2Cu3O6+x 초전도 선재의 제조

  • Yang, Suk-Woo (School of Chemical Engineering, Chonbuk National University) ;
  • Lee, Young-Min (School of Chemical Engineering, Chonbuk National University) ;
  • Kim, Young-Soon (School of Chemical Engineering, Chonbuk National University) ;
  • Park, Jeong-Shik (Department of Petrochemical Engineering, Hanlyo University) ;
  • Kim, Chan-Joong (Superconductivity Research Laboratory, KAERI) ;
  • Hong, Gye-Won (Superconductivity Research Laboratory, KAERI) ;
  • Shin, Hyung-Shik (School of Chemical Engineering, Chonbuk National University)
  • 양석우 (전북대학교 화학공학부) ;
  • 이영민 (전북대학교 화학공학부) ;
  • 김영순 (전북대학교 화학공학부) ;
  • 박정식 (한려대학교 석유화학공학과) ;
  • 김찬중 (한국원자력연구소 초전도실) ;
  • 홍계원 (한국원자력연구소 초전도실) ;
  • 신형식 (전북대학교 화학공학부)
  • Received : 1998.06.11
  • Accepted : 1998.09.12
  • Published : 1998.12.10


$YBa_2Cu_3O_{6+x}(Y123)-Ag$ high-Tc superconducting wires were fabricated by plastic extrusion technique using pyrophoric synthetic and mechanical mixing powder with and without Ag addition(20 wt.%). This method involves powder preparation, plastic paste making, die extrusion, binder burn-out and the sintering process. In order to fabricate a good-quality superconducting body, it is required to use homogeneous and fine-size power as a starting materials. $Y_2O_3-BaCO_3-CuO$ precursor powders with/without Ag addition were prepared both by pyrophoric synthetic(PS) and mechanical mixing(MM) method of raw powders. The formation kinetics of the powder mixtures into Y123 phase was investigated at various temperatures and times in air atmosphere. The powder prepared by PS method was more easily converted into a Y123 phase than the MM powder. The fine size and good chemical homogeneity of the powder prepared by PS method is attributable to the fast formation into a Y123 phase. The critical current density($J_c$) of the Y123-Ag superconducting wires made by plastic extrusion method were in the range of $150A/cm^2{\sim}230A/cm^2$. depending on the charateristics of starting material powders. $J_c$ of the wire prepared by pyrophoric synthetic powder with 20 wt.% Ag addition was $230A/cm^2$.


  1. Supercond. Sci. Technol. v.3 B. R. Weinberger;L. Lynds;J. R. Hull
  2. IEEE Trans. Mag. v.27 B. Dorri;K. Herd;E. T. Laskaris;J. E. Tkaczyk;K. W. Lay
  3. IEEE. Trans. Mag. v.27 J. L. Wu;J. T. Dederer;P. W. Eckels;S. K. Singh;J. R. Hull;R. B. Poeppel;C. A. Youngdahl;J. P. Singh;M. T. Lanagan;U. Balachandran
  4. J. Mater. Res. v.8 D. Ponnusamy;K. Ravi-Chandar
  5. J. Mater. Sci. v.32 C. J. Kim;K. B. Kim;I. H. Kuk;G. W. Hong;S. D. Park;S. W. Yang;H. S. Shin
  6. Appl. Phys. Lett. v.57 D. Bhattacharya;L. C. Pathak;S. K. Mishra;D. Sen;K. L. Chopra
  7. Jpn. J. Appl. Phys. v.66 Y. M. Yang;T. Out;B. R. Jhao;L. Li;Q. J. Ran;R. Y. Jin
  8. J. Phys. D: Appl. Phys. v.21 D. H. A Blank;H. Kruidhof;J. Flokstra
  9. Jpn. J. Appl. Phys. v.27 N. Tohge;M. Tatsumisago;T. Minami;K. Okuyama;M. Adachi;Y. Kousaka
  10. Advanced Ceramic Materials v.2 S. M. Johnson;M. I. Gusman;D. J. Rowcliffe;T. H. Geballe;J. Z. Sun
  11. J. Am. Ceram. Soc. v.73 D. Morgan;M. Maric;D. Luss;J. T. Richardson
  12. J. Appl. Phys. v.60 F. Nava;B. Z. Weiss;K. N. Tu;D. A. Smith;P. A. Psaras
  13. J. Am. Ceram. Soc. v.78 A. J. Chang;S. W. Rhee;S. Baik
  14. J. Chem. Phys v.7 M. Avrami
  15. J. Chem. Phys. v.8 M. Avrami
  16. Jpn. J. Appl. Phys. v.29 J. J. Lin;T. M. Chen;Y. D. Yao;J. W. Chen;Y. S. Gou
  17. J. Appl. Phys v.70 F. Yeh;K. W. White
  18. Physica C v.178 A. K. Gangopadhyay;T. O. Mason
  19. Physica C v.191 M. E. Tidjani;R. Gronsky