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ON AN ERROR OF TRAPEZOIDAL RULE

BumMm I HoNng*, SuUNG HEE CHO1 AND NAHMWOO HAHM*™*

ABSTRACT. We show that if r < 2, the average error of the Trape-
zoidal rule is proportional to n~ min{r+1 3} where n is the number
of mesh points on the interval [0, 1]. As a result, we show that the
Trapezoidal rule with equally spaced points is optimal in the average
case setting when r < 2.

1. Introduction

Because the available informations are limited, many numerical com-
putations in science and engineering can only be solved approximately.
If information about f is typically provided by few function values, such
as N(f) = [f(z1), f(z2), ..., f(zn)], the solution is approximated by a
numerical method. Therefore we have the error between the true and
the approximate solutions.

The error between the true solution and the approximation depends
on a problem setting. In the worst case setting, the error of a numerical
scheme is defined by its worst performance with respect to the given
class of functions. In this paper, we concentrate on another setting, the
average case setting. In this setting, we assume that the class F of input
functions is equipped with a probability measure. Then the average case
error of an algorithm is defined by its expectation, rather than by its
worst case performance. The average case analysis is important and
significant number of results have already been obtained (see, e.g., [5]
and the references cited therein).
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It is well known that the average case setting requires the space
of functions to be equipped with a probability measure. In this pa-
per, we choose a probability measure p, which is a variant of an r-fold
Wiener measure w,. The probability measure w, is a Gaussian measure
with zero mean and correlation function given by M, (f(z) f(y)) =

Jp F@) f(y)wr(df) = 01 (z—:,t)i (i;—!tltdt, where (z —t)7. = [max{0,
(z —t)}]". Equivalently, f distributed according to w, can be viewed as
a Gaussian stochastic process with zero mean and autocorrelation given
above. However, since w, is concentrated on functions with boundary
conditions f(0) = f'(0) = --- = f(M(0) = 0, we choose to study a
slightly modified measure u, that preserves basic properties of w,, yet
does not require any boundary conditions. More precisely, we assume

that a function f, as a stochastic process, is given by
f(l‘) = f1($)+f2(1—$), .’IIE[O,].],

where f; and f2 are independent and distributed according to w,. Then
the corresponding probability measure u, is a zero mean Gaussian with
the correlation function given by

Pe-ti-t% + (E-2)5(t -y
= T e

M, (f(z) f(v)) = /0

We study the problem of approximating an integral I(f) = fol f(z)dz
for f € F = C7[0,1], assuming that the class of integrands is equipped
with the probability measure u,.

2. Basic Definitions

In the integration problem, we compute an approximation to the in-
tegral I(f) = [, f(z)dz, where [ : F — R, with f € F = C"[0,1]. This
approximation to I(f) is computed based on n function values. That
is, the available information N(f) about the integrand f is given by
N(f) = [f(z1), f(z2),..., f(zn)], = € [0,1]. The number n of func-
tion values is called the cardinality of N, and is denoted by card(N).
Given y = [y1,...,yn] = N(f), the approximation to I(f) is provided
by ¢(y) = ¢(N(f)), where ¢ : R®™ — R, called an algorithm, is an
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arbitrary mapping. Numerical quadratures ¢(y) = > .-, a; f(z;) with
appropriately chosen weights a; € R are specific examples of algorithms.
They include composite Newton-Cotes quadratures. Since we analyze the
composite Trapezoidal rule, we now recall the definition and basic prop-
erties of Trapezoidal rule, see also e.g., [1]. In composite Trapezoidal rule,
welet ©p = 0,2z, =1, and z; —z;_1 = h;, 1 =1,2,...,n. On each
subinterval [z;_1,;], the integral I;(f) = [ Z "_1 f(z) dz is approximated
by

T(f) = 5 Ulms) + S}

Then, I(f) is approximated by I(f) = Y., L(f) = T(N(f))
For the average case setting, we assume that the space F' = C"[0, 1) is
equipped with a probability measure y, which is a variant of the r-fold
Wiener measure. In order to define it, we first recall basic properties
of the classical r-fold Wiener measure w,, see [2], [4] and [6]. It is a
Gaussian measure with zero mean and correlation function given by

1 r r

Mo (@) 1) = [ 1@ e = [ EZ U,

F 0 7! 7!

More precisely, we assume that a function f, as a stochastic process, is
given by f(z) = fi(z)+ f2(1—=z), where fy and f are independent and
distributed according to w,. Equivalently, this leads to the probability
measure u, defined on o-field of the space C[0,1] that is zero mean
Gaussian with the correlation function given by

' —t)} — 1) A A IPYREAY o
M,,(f(z) f(y)) = / CEDUED RS0 SO AT
=/4®—ﬂ1@“ﬂi+ﬁ—xnu—w
0

i
rlr! dt.

The average error of an algorithm ¢ that uses N is defined by
e9(6, N3 ) = (M, (LI(F) — o(N(H)P))Y?
1/2
= ([t = oo Puntan)
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It is known, see [3], that for the r-fold Wiener measure wy, the average
error of any algorithm that uses information of cardinality n is bounded
from below by

e (p,N;w,) = Q (n_(r+1)) L V¢, VN, card(N) = n.

3. Average case error of Trapezoidal rule

Recall that the space F = C7[0,1] is equipped with the probability
measure y, defined in chapter 2. The error I(f)—T(N(f)) of Trapezoidal
rule equals

I(f) = T(N(f)) =D _ Zi, where Z; = Zi(f) = Li(f) ~ Tu(f)-
i=1

Since f is a zero-mean Gaussian process, Z;’s are zero-mean Gaussian
random variables with covariances given in the following lemma.

LEMMA 3.1. Forr £ 2,
Mur (Z.LZJ) = 5'ij *Cp h?r+3 for ') S j,

where 6;; is the Kronecker delta and the constant c, is independent of

hi’s and equals respectively: co = 35, c1 = g, and ¢z = 5355

PRrOOF. Let Z;; = Zi(f1) and Z;2 = Z;(f2). Then Zi(f) = Zi +
Z;2, and due to the independence of f; and fa, we have M,, (Z;Z;) =
er(ZiIZjl) + er(ZZ'ngg). For ¢ < j,

M, (Zi1Z;j1)

_ /1 [/z (x_;'Q_ldw~Ai1(t)J [/x .(}L;Tt);dy—Ajl(t) dt

0 i1 : Tj-1 :

1 Ly (t) - Ljr(t) dt,
0

b f(n) = Q(g(n)) means that there is a positive constant C such that
f(n) 2 Cg(n), vn.
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where L;; is the first term and Lj; is the second term in the above
integral, and A;y(t) = T; ((;rf)i) Since L;1(t) = 0 when t € [z;,1], we

have

Mo.(ZaZs) = / Lar(t) - Ly (t) dt.
0

Similarly,
Mo, (ZiaZ;s)
' T (t— )] -y
= / / . + dr — Azg(t) l/ -——T'—"' dy — Ajz(t)
Tj-1 |YZTi ZTj-1

1
_ / La(t) - La(t) dt,

where L;; is the first term and Lj; is the second term in the above
integral, and A;2(t) = T; ( T)’“) Since Lja(t) = 0 when t € [0,2;_1],
we therefore have

1

M#r(ZiZj) = Azz Li1(t) . le(t) dt + / LiQ(t) . ng(t) dt.

Tj-1l

Since Trapezoidal rule is exact for polynomials of degree < 2, Lj;(t) =
0 for t < z; and Lis(t) = 0 for t > z;_1. Thus, M, (Z;Z;) = 0, and
hence, Z; and Z; are independent when ¢ < j. For i = j, let 2 = m_;;—:“
and u = = —Z=1 Then

er (Z'l,21)

2
T T A AL
Ti—1 Ti-1 r! r!
LT (2 — ) hi (h(0—uw)  R7(1—u); )]
B /0 UO o mdEm { a T H hadu

2r+3
= c'r'lhi'r—}— )
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where

crlz/ol [/01(—'2_7;‘&(12:—%{(0;;‘)1+(1_r!“)1}]2du.

Similarly, M, (Z%) = croh?™*3, where

2

/[/ ooy, {(u !o>++(u;!1)1}] n

We now calculate ¢, = ¢,1 + ¢ro. For r =0,

1 1 2 1 2
1 1 1
-/0 [/u dz—§] du—/o [i—u] du—2j4—
rpee 1)’ T 17? 1

and

Forr =1,

C11

=/01 [/Ou(z——u)+dz+/u1(z—u)+dz—%{(O—u)++(1—u)+}]2du

Ly 1 2 I, 112
—/0 [/u(,,—u)dz——i(l—u)] du—/o [iu —Eu] du
_1
T 120
and

€12
2

:/01 [/Ou(u—z)+dz+Ll(u—z)+dz—%{(u—0)++(u—l)+}] du

[[[w-2d-3u-0] w=[ (k-1 a

1

120°
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For r =2,
C21=/01[/0u(z—*;&dz+/u Gl
e —2u)i+(1 —;)i}];du
[
=/(1)3[ (1-w- 01~ )JQdu
~ 5040

622_/ U (u—z)+d +/ (u—zz)i
_é{(u—20>i+(u—21)1}rdu
[ g2 e )
2/0 [éu:*———[liuzr du

13
T 5040°

Therefore ¢g = 11—2, c1 = élﬁ and c; = —53—0 This completes the proof. [

In the next theorem that is the main theorem of this paper, we show
that the Trapezoidal rule with equally spaced points is optimal in the
average case setting when r < 2.

THEOREM 3.2. For any information N, of cardinality n,

€@9(S, Nps i) = € (n“ min{r+1, 3}) _
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Furthermore, for v < 2, Trapezoidal rule at equally spaced points is
almost optimal among all algorithms that use n functions values at ar-
bitrary points.

PROOF. Assume r < 2. Since Z;’s are independent,

e9(S, N 1r)? = S M (23) = co - Y BETH

=1 i=1

with ¢, given in Lemma 3.1. To minimize the above expression, we need
to solve

0 - 2r+3 .
%;hz =0, for j=1,2,...,n,

subject to 3>, h; = 1. Then, since by, = 1 — Y17 ki,

a n—1 S n—1 2r+3
oh; > RS 4 (1—Z‘h,->

=1 =1

n—1 2r+2
=(2r+ 3)hj2-"+2 - (2r+3) (1 - Z hi)

3=1
=0, forj=1,...,n—1.

Thus, we have
n—1
hj =1-Y hi =hpforj=1,...,n-L
i=1
Hence, Y hf”’3 is minimized when all h;’s are equal. Let h = h; for all
1. Then, we have
n n
eavg(s, Np; ,LL,.)2 = ¢ Z h%r+3 > e Z h2r+3
=1 i=1
c
— —Th2r+2-
2

This completes the case of r < 2. O
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