A NOTE ON THE SAMPLE PATH-VALUED CONDITIONAL YEH-WIENER INTEGRAL

JOO SUP CHANG AND JOONG HYUN AHN

ABSTRACT. In this paper we define a sample path-valued conditional Yeh-Wiener integral for function F of the type

$$E[F(x)|x(*,\frac{T}{S}*)=\psi(\blacktriangle)],$$

where ψ is in $C[0, \sqrt{S^2 + T^2}]$ and $\blacktriangle = \frac{\sqrt{S^2 + T^2}}{S^2} *^2$ and evaluate a sample path-valued conditional Yeh-Wiener integral using the result obtained.

1. Introduction

For $Q=[0,S]\times[0,T]$, let C(Q) denote Yeh-Wiener space, i.e., the space of all real-valued continuous function x(s,t) on Q. Yeh [3] defined a Gaussian measure m_y on C(Q) such that as a stochastic process $\{x(s,t)|(s,t)\in Q\}$ has mean $E[x(s,t)]=\int_{C(Q)}x(s,t)m_y(dx)=0$ and covariance $E[x(s,t)x(u,v)]=\min\{s,u\}\min\{t,v\}$. Let C[0,T] denote the standard Wiener space on [0,T] with Wiener measure m_w and $E_w[x(s)]=\int_{C[0,T]}x(s)m_w(dx)$ denote the Wiener integral. In [2], Park and Skoug defined a sample path-valued conditional Yeh-Wiener integral of functionals for the condition $x(S,\bullet)=\psi(\bullet)$ where ψ is in C[0,T] and they evaluated the conditional Yeh-Wiener integral.

The purpose of this paper is to treat conditional Yeh-Wiener integral with sample path-valued conditioning function. We first define a sample path-valued conditional Yeh-Wiener integral for function F of the type $E(F(x)|x(*,\frac{T}{S}*)=\psi(\blacktriangle))$ where ψ is in $C[0,\sqrt{S^2+T^2}]$ and

Received March 6, 1998. Revised August 8, 1998.

¹⁹⁹¹ Mathematics Subject Classification: Primary 60J65, 28C20.

Key words and phrases: Yeh-Wiener integral, conditional Yeh-Wiener integral.

This paper was supported in part by NON DIRECTED RESEARCH FUND, Korea Research Foundation, and Hanyang University Research Grant.

2. Sample path-valued conditional Yeh-Wiener integral

With a similar method as in [2], we obtain the following theorem.

THEOREM 1. If F is a Yeh-Wiener integrable function on C(Q), then we have

(2.1)
$$E_w \left\{ E[F(x)|x(*,T) = \sqrt{T}\psi(*)] \right\} = E(F(x))$$

for * in [0, S].

For a Yeh-Wiener integrable function F on C(Q), consider the conditional Yeh-Wiener integral of the type

(2.2)
$$E[F(x)|x(*,\frac{T}{S}*) = \psi(\blacktriangle)]$$

where ψ is in $C[0, \sqrt{S^2 + T^2}]$ and

Since $x(s,t) - \frac{S}{Ts} \min\{t, \frac{T}{S}s\} x(s, \frac{T}{S}s)$ are stochastically independent for (s,t) in Q, we have

$$\begin{split} &(2.4) \quad E\bigg(F(x)|x(*,\frac{T}{S}*)=\psi(\blacktriangle)\bigg)\\ &=E\bigg(F\big(x(*,\bullet)-\frac{S}{T*}\min\{\bullet,\frac{T}{S}*\}x\big(*,\frac{T}{S}*\big)+\frac{S}{T*}\min\{\bullet,\frac{T}{S}*\}\psi(\blacktriangle)\big)\bigg) \end{split}$$

for almost all ψ in $C[0, \sqrt{S^2 + T^2}]$.

Using (2,4), we obtain the following theorem.

THEOREM 2. If F is Yeh-Wiener integrable function on C(Q), then we have

(2.5)
$$E_w \left\{ E\left[F(x)|x(*,\frac{T}{S}*) = \sqrt{\frac{ST}{\sqrt{S^2 + T^2}}} \psi(\blacktriangle)\right] \right\} = E\left(F(x)\right)$$

for * in [0, S] and \blacktriangle given by (2.3).

PROOF. Using (2.4), the left side of (2.5) becomes

(2.6)
$$E_{w} \left\{ E\left[F\left(x(*,\bullet) - \frac{S}{T*}\min\{\bullet, \frac{T}{S}*\}x\left(*, \frac{T}{S}*\right) + \frac{S}{T*}\min\{\bullet, \frac{T}{S}*\}\sqrt{\frac{ST}{\sqrt{S^{2} + T^{2}}}}\psi(\blacktriangle)\right)\right] \right\}.$$

Let

$$y(s,t) = x(s,t) - \frac{S}{Ts} \min\{t, \frac{T}{S}s\}x(s, \frac{T}{S}s) + \frac{S}{Ts} \min\{t, \frac{T}{S}s\}\sqrt{\frac{ST}{\sqrt{S^2 + T^2}}}\psi(u)$$

where $u = \sqrt{S^2 + T^2}s^2/S^2$. The mean of y is E(y(s,t)) = 0 and the covariance of y is

(2.8)
$$E(y(s,t)y(u,v)) = \min\{s,u\}\min\{t,v\}.$$

Here $\frac{S}{Ts}\min\{t, \frac{T}{S}s\}$ is equal to 1 and less than 1 for the cases $\frac{T}{S}s \leq t$ and $\frac{T}{S}s \geq t$, respectively. Thus y(s,t) is the Yeh-Wiener process, and so (2.6) becomes E(F(x)).

In the following example, we verify that (2.5) in Theorem 2 holds for the function $F(x) = \int_Q x^2(s,t) ds dt$. (2.1) in Theorem 1 can be obtained by the similar method as in [2].

EXAMPLE. Let $F(x) = \int_Q x^2(s,t) ds dt$. Then We have, using (2.4) and Fubini Theorem,

$$(2.9) I \equiv E\left(\int_{Q} x^{2}(s,t)dsdt \middle| x(s,\frac{T}{S}s) = w\left(\frac{\sqrt{S^{2}+T^{2}}}{S^{2}}s^{2}\right)\right)$$

$$= \int_{Q} E\left\{\left[\left(x(s,t) - \frac{S}{Ts}\min\{t,\frac{T}{S}s\}x(s,\frac{T}{S}s)\right) + \frac{S}{Ts}\min\{t,\frac{T}{S}s\}w\left(\frac{\sqrt{S^{2}+T^{2}}}{S^{2}}s^{2}\right)\right]^{2}\right\}dsdt$$

where ψ is in $C[0, \sqrt{S^2 + T^2}]$. Since x(s, t) is a Yeh-Wiener process, we have

(2.10)
$$I = \int_{Q} \left\{ st - \frac{S}{T} \left(\min\{t, \frac{T}{S}s\} \right)^{2} + \left(\frac{S}{Ts} \min\{t, \frac{T}{S}s\} w \left(\frac{\sqrt{S^{2} + T^{2}}}{S^{2}} s^{2} \right) \right)^{2} \right\} ds dt.$$

If we replace $w(\sqrt{S^2 + T^2}s^2/S^2)$ by

(2.11)
$$\sqrt{\frac{ST}{\sqrt{S^2 + T^2}}} \psi\left(\frac{\sqrt{S^2 + T^2}}{S^2}s^2\right)$$

and integrate in ψ over $C[0, \sqrt{S^2 + T^2}]$, we have

$$(2.12) E_{w}(I) = \frac{S^{2}T^{2}}{4} - \int_{Q} \left\{ \frac{S}{T} \left(\min\{t, \frac{T}{S}s\} \right)^{2} - \left(\frac{S}{Ts} \min\{t, \frac{T}{S}s\} \right)^{2} \frac{ST}{\sqrt{S^{2} + T^{2}}} E_{w} \left(\left(\psi \left(\frac{\sqrt{S^{2} + T^{2}}}{S^{2}} s^{2} \right) \right)^{2} \right) \right\} ds dt$$

$$= \frac{S^{2}T^{2}}{4}$$

where the last equality in (2,12) comes from the fact that

(2.13)
$$E_w \left(\left(\psi \left(\frac{\sqrt{S^2 + T^2}}{S^2} s^2 \right) \right)^2 \right) = \frac{\sqrt{S^2 + T^2}}{S^2} s^2.$$

Since $E\left[\int_Q x^2(s,t)dsdt\right] = S^2T^2/4$, we justify (2.5) in Theorem 2.

ACKNOWLEDGEMENT. The authors would like to thank the referee for helpful comments.

References

- [1] C. Park and D. L. Skoug, Conditional Yeh-Wiener integrals with vector-valued conditioning functions, Proc. Amer. Math. Soc. 105 (1989), 450-461.
- [2] _____, Sample path-valued conditional Yeh-Wiener integrals and a Wiener integral equation, Proc. Amer. Math. Soc. 115 (1992), 479-487.
- [3] J. Yeh, Wiener measure in a space of function of two variable, Trans. Amer. Math. Soc. 95 (1960), 433-450.
- [4] ______, Inversion of conditional Wiener integral, Pacific J. Math. 59 (1975), 623-638.

Department of Mathematics Hanyang University

Seoul 133-791, Korea

E-mail: jschang@email.hanyang.ac.kr