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IDEMPOTENTS IN QUASI-LATTICES

YounGg HEE HONG

ABSTRACT. Using idempotents in quasi-lattices, we show that the
category Latt of lattices is both reflective and coreflective in the cat-
egory qLatt of quasi-lattices and homomorphisms. It is also shown
that a quasi-ordered set is a quasi-lattice iff its partially ordered re-
flection is a lattice.

0. Introduction

It is well known that lattices can be defined as algebras or partially
ordered sets having joins and meets.

In order to generalize the concept of lattices in the setting of quasi-
ordered sets, Chajda introduced a concept of g-lattices in 1992 ([3]) and
Chajda and Kotrle characterized subdirectly irreducible and congruence
distributive g-lattices ([4]).

The purpose of this paper is to introduce a slightly weaker concept of
quasi-lattices and to study its relationship with lattices. To obtain the
result, the lattice of idempotents of a quasi-lattice plays an important
role.

Using this tool and the category theory, we show that the lattice of
idempotents of a quasi-lattice gives rise to the reflection and coreflection
for the quasi-lattice. Moreover, we show that a quasi-ordered set is
a quasi-lattice iff its partially ordered reflection is a lattice, which is
precisely the lattice of idempotents of the quasi-ordered lattice. It is
also shown that a quasi-lattice L is a g-lattice iff the join and meet of
every pair of elements of L are idempotents.

For the terminology not introduced in the paper, we refer to [1] for
the category theory and [2] for the ordered sets.
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1. The lattice of idempotents of a quasi-lattice

We now introduce a concept of quasi-lattices.

DEFINITION 1.1. An algebra L = (L,V,A) of type (2,2) is called a
quasi-lattice if it satisfies the following conditions for all a,b,c € L:

(q1) (avb)Ve=aV(bVe), (anb)yAc=aAN (bAc);

(92) avVb=>bVa, aANb=bAa;
(@3) aV({aAb)=aVa, aN(aVvbd)=aAag
(q4) aVa=aAa.

We note that the concept of quasi-lattices is self-dual. Lattices are
quasi-lattices, but there are quasi-lattices which are not lattices. Indeed,
let A = {a,b,c} endowed with the operations V = A: A x 4 — A
(zVy=zAy=aforall z,y € A). Then A is clearly a quasi-lattice but
not a lattice.

In the following, a quasi-lattice L = (L,V, A) will be simply denoted
by L.

REMARK. By definition, it is clear that any quasi-lattice L satisfies
the following equations for all a,b € L:

(1) avaVa=aVa,ahaAa=aAa.
(2) av(anb)=aAn(aVD).

DEFINITION 1.2. An element a of a quasi-lattice is said to be an
idempotent if a V a = a.

Using the above remark, for any quasi-lattice L, {a V a | a € L} is the
set of all idempotents of L, which will be denoted by eL.

We recall that Chajda introduced the concept of g-lattices which are
quasi-lattices L with the weak idempotence condition, namely

aVv(bVvb)=aVb

aN(bAb)=aAnbfora,be L (see [3]).

We now characterize g-lattices among quasi-lattices by idempotents.

PROPOSITION 1.3. A quasi-lattice L is a g-lattice iff for any a,b € L,
aV b and a A\ b are idempotents.
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PROOF. Suppose tnat L is a g-lattice, then applying the weak idem-
potence condition twice, one has

aVb=aV(bvb)=(aVa)V(bVbd)
= (aVb)V(aVb);
hence ¢ V b is an idempotent. Dually a A b is also an idempotent.

Conversely, suppose that L satisfies the given condition, then for a,b €
L, one has

aV(bVvb)y={aVv(bVvb}Vv{aVv(bVvb)}
=(avVa)V(bVbVbVb)
=(aVa)V({bVvb)=(aVb)V(aVb)
=aVb.
Dually the remaining condition holds. Thus L is a g-lattice. O

REMARK. ThLere is a quasi-lattice which is not a g-lattice. Indeed,
let {0,e} be the two point chain, where 0 < e and let L = {0,e,b},
while joins and meets for 0,e are the usual ones, but 0OVb=5bVv 0 = 0,
eVb=bVe=bVb—=e,and OAb=bA0=0,enb=bAe=bAb=cg,
then L is clearly a quasi-lattice but not a g-lattice, because 0V b is not
an idempotent.

LEMMA 1.4. In a quasi-lattice L, eL is a subalgebra of L. Moreover
el is a lattice.

ProOOF. Using (q4), eL = {aVa|a € L} ={aAa|a€ L}; hence
it is immediate that eL is a subalgebra of L. Furthermore, (eL,V,A)
is a lattice, because for any a,b € eL, aV (aAb) = aVa = a and
aAN(aVb)=aAa=a. O

DEFINITION 1.5. Let L and L’ be quasi-lattices (lattices). A map
fi+ L — L' is called a homomorphism if it preserves joins and meets.

It is clear that the class of quasi-lattices and homomorphisms between
them forms a category, which will be denoted by qLatt. Since the class of
quasi-lattices is equational, the category gLatt is an algebraic category
and hence complete and cocomplete (see [1]). Moreover the category
Latt of lattices and homomorphisms between them is a full subcategory
of qLatt.
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THEOREM 1.6. The category Latt is coreflective in the category
qLatt.

PROOF. For a quasi-lattice L, eL is a sublattice of L by Lemma 1.4.
Let j: eL — L be the inclusion homomorphism, then we show that
(eL,j) is the Latt-coreflection for L € gLatt. In fact, if we take M €
Latt and a homomorphism f: M — L, then for eacha € M, aVa = a;
hence f(a) = f(aVa) = f(a)V f(a), so that f(a) € eL. Thus f(M) C eL.
Let f: M — eL be the corestriction of f to eL. Then clearly jo f = f
and f is a homomorphism. Since j is 1-1, the lattice homomorphism f
with j o f = f is unique. Hence Latt is a coreflective subcategory of
ql.att. O

Using the results in [1], one has:

COROLLARY 1.7. The subcategory Latt is closed under the formation
of colimits in qLatt.

A lattice L = (L,V, A) defines a partial order relation < on the set
L, namely a < b iff a Vb = b (equivalently a A b = a). We define a
quasi-order relation < on a quasi-lattice.

NOTATION. For a quasi-lattice L, we define the map ¢,: L — eL by
er(a) =aValael).

PROPOSITION 1.8. On a quasi-lattice (L, V, A), we define a relation <
as follows: a < biff (aVa)V(bVb) = bVvb. Then (L, <) is a quasi-ordered
set.

PROOF. We note that for any a,b € L, a < b iff e1(a) < e (b) in the
lattice eL. Thus < is the initial quasi-order relation on L with respect

toer: L — (eL, <) (see [1)). O

In the following, the relation < on a quasi-lattice I means the above
quasi-order relation and the quasi-lattice L is also denoted by (L, <).

REMARK 1.9. (1) In a quasi-lattice L, a < biff (aVa)A(bVb) = aVa,
because £1,(a) < er(b) iff (aVa)A(bVb) = aVa in the lattice (eL, Vv, A).
(2) In a quasi-lattice L,a < band b< aiffaVa =bVb, becausea < b
and b < a iff e;(a) = e1(b). In particular, for anya € L,a<aVa < a.
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(3) We recall that the quasi-order relation < on a g-lattice (L, V,A)
is defined by a < b iff a Vb = bV b, or equivalently a Ab = a A a ([3]).
Using the equation aV (bVbd) = aVb, aA(bAb) = aAb, for any a,b € L,
aVb=>bVvbiff (aVva)V(bVb)=>bVband hence our quasi-order relation
on L is identical with < in [3].

Using (ql), (q2) and (q4), one has the following immediately:
LEMMA 1.10. For a quasi-lattice L, e;,: L — eL is a homomorphism.

ProposITION 1.11. Let (L, <) be a quasi-lattice and a,b,c,d € L.
Then one has:

(1) a<avbandb<aVb.

(2) Ifa<candb<c,thenaVb<ec

(3) anb<aandaAb<hb.

(4) Ifc<aandc<b,thenc<aAb.

(5) Ifa<candb<d, thenaVb<cVdandaAb<cAd.

PROOF. Since ¢(a),er(b) < er(a) V er(b) = er(a VvV b), we have
a<aVbandb < aVb. Similarly, using the above lemma, the remaining
part can be proved and we omit the proof. |

LEMMA 1.12. For any L € qLatt, let < be the quasi-order on L, and
R={(z,y) e LxL |z <yandy < z}. Then R is a congruence relation
on L.

PROOF. We note that e;,: L — eL is a homomorphism and ker(e) =
{(z,y) € Lx L | er(z) = er(y)} = {(z,y) € LxL | z < y and
y <z} = R. Thus R is a congruence relation on L. g

REMARK 1.13. For a quasi-lattice L, we consider the quotient algebra
L/ R of L with respect to the congruence relation R = ker(eg) on L, then
L/R = L/ker(ey) = eL, since €,: L — eL is an onto homomorphism.

THEOREM 1.14. The category Latt is reflective in the category
qLatt.

PROOF. Let L be a quasi-lattice, then (¢1,eL) is the Latt-reflection
for L € gqLatt. In fact, take any M € Latt and a homomorphism
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f: L — M, then ker(er) C ker(f). Indeed, take any (z,y) € ker(ep),
ie, zVz=yVy. Then f(z) = f(z)V f(z) = flzVvz)= flyVy) =
fw)V f(y) = f(y), for every element of M is an idempotent; therefore
(z,y) € ker(f). So, by the Fundamental Theorem of Factorization ([6]),
there is a unique homomorphism f: el — M with foer, = f. Hence
Latt is a reflective subcategory of qLatt. (]

COROLLARY 1.15. The subcategory Latt is closed under the forma-
tion of limits in qLatt.

REMARK. It is well known that the category POS of partially ordered
sets and order preserving maps between them is a reflective subcategory
of QOS of quasi-ordered sets and order preserving maps ([1]). For a
quasi-ordered set (X, <), the POS-reflection is given by the quotient
map ¢: X — X/R, where R = {(z,y) € X x X |z <y and y < z}
and the order relation < on X/R is given by [z] < [y] if z < y (z,y €
X). Thus eL = L/ker(ez,) is precisely the POS-reflection of the quasi-
ordered set (L, <), since ker(er) = {(z,y) |z <y and y < z}.

We now show that the converse of the above remark also holds as
follows.

THEOREM 1.16. Let L be a quasi-ordered set. Then L is a quasi-
lattice iff the POS-reflection for L is a lattice.

PROOF. By the above remark, it remains to show that the converse
holds. Assume that the POS-reflection for L is a lattice. Let R =
{(z,y) e Lx L |z <y and y < z}, then the quotient map ¢q: L — L/R
is the POS-reflection for L, and z < y iff ¢(z) < q(y) for all z,y € L.
Since q is onto, there is a map m: I/R — L with gom = 1;/5. Define
binary operations V,A: L x L — L by

V =moVyro(qx q)

A=moApro(gXxq).

In other words,

aVb = m(q(a) vV qd)) and a A b = m(g(a) A g(b)) for all a,b € L,
where g(a) V g(b) and g(a) A g(b) denote for the simplicity q(a) Vg q(b)
and g(a) Ar/ g q(b), respectively. Then using the fact that gom = 1y,
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we can prove that (L, V,A) is a quasi-lattice. In fact, for all a,b,c € L,

(aVb)Ve=mqla)Vq(d) Ve
= m{g(m{g(a) v a(B))) V q(c)) = m((a(a) V a(b)) V q(c))
=m(q(a) V (q(b) V ¢(c))) = m(a(a) v g(m(q(d) V 4(c))))
=m(q(a) VgbVe)=aV(bVec).

Moreover, a Vb = m(q(a) V q(b)) = m(g(b) V g(a)) = bV a. Furthermore,

aV (aAb) =m(g(a) v g(m(g(a) A q(b))))
= m(g(a) V (g(a) A q(b))) = m(q(a))
=m(q(a) V ¢(a)) = a V a.

Finally,

aVa=m(q(a)Vq(a))
= m(q(a)) = m(q(a) A q(a)) =aAa.

Dually, one has the remaining conditions. This completes the proof. [
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