Hypoxia-Induced EDNO Release is Further Augmented by Previous Hypoxia and Reoxygenation in Rabbit Aortic Endothelium

  • Han, Jae-Jin (Department of Thoracic Surgery, Ewha Womans University) ;
  • Suh, Suk-Hyo (Department of Physiology, College of Medicine, Ewha Womans University) ;
  • Suh, Kyung-Phil (Department of Thoracic Surgery, Seoul National University College of Medicine) ;
  • Kim, Ki-Whan (Department of Physiology & Biophysics, Seoul National University College of Medicine)
  • Published : 1998.04.21


The present study was designed: (1) to determine whether or not hypoxia stimulates the release of endothelium-derived relaxing factors (EDRFs) from endothelial cells, and (2) to examine whether or not the hypoxia-induced EDRFs release is further augmented by previous hypoxia-reoxygenation, using bioassay system. In the bioassay experiment, rabbit aorta with endothelium was used as EDRFs donor vessel and rabbit carotid artery without endothelium as a bioassay test ring. The test ring was contracted by prostaglandin $F_{2{\alpha}}$ $(3{\times}10^{-6}\;M/L)$, which was added to the solution perfusing through the aortic segment. Hypoxia was evoked by switching the solution aerated with 95% $O_2/5%\;CO_2$ mixed gas to one aerated with 95% $N_2/5%\;CO_2$ mixed gas. When the contraction induced by prostaglandin $F_{2{\alpha}}$ reached a steady state, the solution was exchanged for hypoxic one. And then, hypoxia and reoxygenation were interchanged at intervals of 2 minutes (intermittent hypoxia). The endothelial cells were also exposed to single 10-minute hypoxia (continuous hypoxia). When the bioassay ring was superfused with the perfusate through intact aorta, hypoxia relaxed the precontracted bioassay test ring markedly. Whereas, when bioassay ring was superfused with the perfusate through denuded aorta or polyethylene tubing, hypoxia relaxed the precontracted ring slightly. The relaxation was not inhibited by indomethacin but by nitro-L-arginine or methylene blue. The hypoxia-induced relaxation was further augmented by previous hypoxia-reoxygenation and the magnitude of the relaxation by intermittent hypoxia was significantly greater than that of the relaxation by continuous hypoxia. The results suggest that hypoxia stimulates EDNO release from endothelial cells and that the hypoxia-induced EDNO release is further augmented by previous hypoxia-reoxygenation.