Study on the Specificity Alteration of Mammalian UV Endonuclease III

  • Lee, Jae-Yung (Department of Biology, College of Natural Science, Mokpo National University) ;
  • Kim, Joon (Laboratory of Biochemistry, Graduate School of Biotechnology and Division of Life Sciences, Korea University)
  • Received : 1996.11.13
  • Published : 1997.01.31

Abstract

A mammalian DNA repair enzyme, UV endonuclease III which also functions as a ribosomal protein S3 (rpS3), was purified from mouse cells and characterized. UV endonuclease III was previously cloned and known to yield a peptide of 32 kDa upon expression in E. coli [Kim et al., (1995) J. Bioi. Chem. 270, 13620-13629]. However, biochemically purified UV endonuclease III, which has a sedimentation coefficient of 3.25, appears to have an additional peptide of 28 kDa. It appears that two bands were derived from one complex, judging from the comparison of the nuclease activity on the native and SDS-gel electrophoreses. UV endonuclease III becomes non-specific upon purification and this phenomenon is more significant in the case of pure fractions of the enzyme. Non-specific activity was not influenced by pH or any salt conditions.

Keywords

DNA repair;endonuclease;specificity;ribosomal protein S3;UV damage

References

  1. Mol. Cell. Biol. v.6 Berger, A.;Edenberg, M.J. https://doi.org/10.1128/MCB.6.10.3443
  2. Anal. Biochem. v.72 Bradford, M.M. https://doi.org/10.1016/0003-2697(76)90527-3
  3. Nature v.298 Brash, D.E.;Haseltine, W.A. https://doi.org/10.1038/298189a0
  4. J. Biol. Chem. v.254 Davidson, B.;Leighton, T.;Rabinowitz, J.
  5. Nucleic Acids Res. v.10 Demple, B.;Linn, S. https://doi.org/10.1093/nar/10.12.3781
  6. J. Biol. Chem. v.270 Kim, J.;Chubatsu, L.;Stahl, J.;Admon, A.;Fellous, R.;Linn, S. https://doi.org/10.1074/jbc.270.23.13620
  7. J. Bacteriol. v.130 Kim, S.;Lew, B.;Chang, F.N.
  8. Nucleic Acids Res. v.16 Kim, J.;Linn, S. https://doi.org/10.1093/nar/16.3.1135
  9. J. Biol. Chem. v.264 Kim, J.;Linn, S.
  10. Carcinogenesis v.5 Kraemer, K.H.;Lee, M.M.;Scotto, J. https://doi.org/10.1093/carcin/5.4.511
  11. Arch. Dermatol. v.123 Kraemer, K.H.;Lee, M.M.;Scotto, J. https://doi.org/10.1001/archderm.1987.01660260111026
  12. Proc. Natl. Acad. Sci. USA v.73 Kuhnlein, U.;Penhoet, E.E.;Linn, S. https://doi.org/10.1073/pnas.73.4.1169
  13. Nucleic Acids Res. v.5 Kuhnlein, U.;Penhoet, E.E.;Linn, S. https://doi.org/10.1093/nar/5.3.951
  14. J. Biol. Chem. v.255 Mosbaugh, D.;Linn, S.
  15. Mol. Cell. Biol. v.6 Protic-Sabljic, M.;Tuteja, N.;Munson, P.J.;Hauser, J.;Kraemer, K.H.;Dixon, K. https://doi.org/10.1128/MCB.6.10.3349
  16. Nature v.195 Reisfeld, R.A.;Lewis, U.J.;Williams, D.E. https://doi.org/10.1038/195281a0
  17. Genes Dev. v.7 Tycowski, K.T.;Shu, M.D.;Steitz, J.A. https://doi.org/10.1101/gad.7.7a.1176