Expression and Characterization of Recombinant Human Cu,Zn-Superoxide Dismutase in Escherichia coli

  • Kang, Jung-Hoon (Department of Genetic Engineering, College of Natural Science&Engineering, Chongju University) ;
  • Choi, Bong-Jin (Department of Genetic Engineering, College of Natural Science&Engineering, Chongju University) ;
  • Kim, Sung-Moon (Department of Genetic Engineering, College of Natural Science&Engineering, Chongju University)
  • Received : 1996.11.07
  • Published : 1997.01.31

Abstract

Expression of human Cu.Zn-superoxide dismutase (SOD) with activity comparable to human erythrocyte enzyme was achieved in E. coli B21(DE3) by using the pET-17b expression vector containing a T7 promoter. Recombinant human SOD was found in the cytosol of disrupted bacterial cells and represented > 25% of the total bacterial proteins. The protein produced by the E. coli cells was purified using a combination of ammonium sulfate precipitation, Sephacryl S-100 gel filtration and DEAE-Sephacel ion exchange chromatography. The recombinant Cu,Zn-SOD and human erythrocyte enzyme were compared using dismutation activity, SDS-PAGE and immunoblotting analysis. The mass of the subunits was determined to be 15,809 by using a electrospray mass spectrometer. The copper specific chelator. diethyldithiocarbamate (DOC) reacted with the recombinant Cu,Zn-SOD. At $50{\mu}M$ and $100{\mu}M$ concentrations of DOC, the dismutation activity was not inhibited for one hour but gradually reduced after one hour. This result suggests that the reaction of DOC with the enzyme occurred in two distinct phases (phase I and phase II). During phase I of this reaction, one DOC reacted with the copper center, with retention of the dismutation activity while the second DOC displaced the copper, with a loss of activity in phase II.

Keywords

copper;zinc-superoxide dismutase;diethyldithiocarbamate;expression;purification

References

  1. Free Radical Biol. Med. v.17 Mankhetkorn, S.;Abedinzadeh, Z.;Houee-Levin, C. https://doi.org/10.1016/0891-5849(94)90091-4
  2. J. Pharmacol. Exp. Ther. v.236 Mansour, H.;Levacher, M.;Gaugerot-Pocidalo, M.A.;Rouveix, B.;Pocidalo, J.J.
  3. J. Biol. Chem. v.254 Misra, H.P.
  4. J. Biol. Chem. v.244 McCord, J.M.;Fridovich, I.
  5. Cancer Res. v.39 Oberley, L.W.;Buettner, G.R.
  6. Lancet v.335 Reisinger, E.C.;Kern, P.;Ernst, M.;Block, P.;Flad, H.D.;Dietrich, M. https://doi.org/10.1016/0140-6736(90)90802-C
  7. Proc. Natl. Acad. Sci. USA v.72 Richardson, J.S.;Thomas, K.A.;Rubin, R.H.;Richardson, D.C. https://doi.org/10.1073/pnas.72.4.1349
  8. Proc. Natl. Acad. Sci. USA v.80 Sherman, L.;Dafni, N.;Leiman-Hurwitz, J.;Groner, Y. https://doi.org/10.1073/pnas.80.18.5465
  9. Proc. Natl. Acad. Sci. USA v.93 Yim, M.B.;Kang, J.H.;Yim, H.S.;Kwak, H.S.;Chock, P.B.;Stadtman, E.R. https://doi.org/10.1073/pnas.93.12.5709
  10. FEBS Lett. v.120 Barra, D.;Martini, F.;Bannister, J.V.;Schinia, M.E.;Rotilio, W.H.;Bannister, W.H.;Bossa, F.
  11. J. Biol. Chem. v.262 Beyer, W.F. Jr.;Fridovich, I.;Mullenbach, G.T.;Hallewell, R.
  12. Life Sci. v.45 Brewton, G.W.;Hersh, E.M.;Rios, A.;Mansell, P.W.A.;Hollinger, B.;Reuben, J.M. https://doi.org/10.1016/0024-3205(89)90234-8
  13. Lancet v.2 Buhl, R.;Jaffe, H.A.;Holroyd, K.J.;Wells, F.B.;Mastrangeli, A.;Saltini, C.;Cantin, A.M.;Crystal, R.G.
  14. J. Biol. Chem. v.256 Cocco, D.;Calabrese, L.;Rigo, A.;Argese, E.;Rolilio, G.
  15. Biochem. Pharmacol. v.29 Deneke, S.M.;Fanburg, G.L. https://doi.org/10.1016/0006-2952(80)90432-3
  16. Annu. Rev. Biochem. v.64 Fridovich, I. https://doi.org/10.1146/annurev.bi.64.070195.000525
  17. Annu. Rev. Pharmacol. Toxicol. v.23 Fridovich, I. https://doi.org/10.1146/annurev.pa.23.040183.001323
  18. PCR Protocols Friedman, K.D.;Rosen, N.L.;Nuwman, P.J.;Montgomery, R.R.;Innis, M.A.(ed.);Gelfand, D.H.(ed.);Sninsky, J.J.(ed.);White, T.J.(ed.)
  19. J. Biol. Chem. v.196 Gubler, C.J.;Lahey, M.E.;Ashenbrrucker, H.;Cartwright, G.E.;Wintrobe, M.M.
  20. Nucleic Acids Res. v.13 Hallewell, R.A.;Masiarz, F.R.;Najarian, R.C.;Puma, J.P.;Quiroga, M.R.;Randorph, A.;Sanchez-Pescador, R.;Scandella, C.J.;Smith, B.;Steiner, K.S.;Mullenbach, G.T. https://doi.org/10.1093/nar/13.6.2017
  21. Free Radicals in Biology and Medicine Halliwell, B.;Gutteridge, J.
  22. J. Biol. Chem. v.252 Haniguchi, T.;Hirata, F.;Hayaishi, O.
  23. Proc. Natl. Acad. Sci. USA v.83 Hartman, J.R.;Geller, T.;Yavin, Z.;Bartfeld, D.;Kanner, D.;Aviv, H.;Gorecki, M. https://doi.org/10.1073/pnas.83.19.7142
  24. Biochem. Pharmacol. v.34 Hellstrom-Lindhal, E.;Weiner, H. https://doi.org/10.1016/0006-2952(85)90695-1
  25. Clin. Rheum. Dis. v.6 Huber, W.;Menander-Huber, K.B.
  26. Free Radical Biol. Med. v.10 Iqbal, J.;Whitney, P. https://doi.org/10.1016/0891-5849(91)90023-V
  27. Biochemistry v.19 Jabusch, J.R.;Farb, D.L.;Kerschensteiner, D.A.;Deutsch, H.F. https://doi.org/10.1021/bi00552a005
  28. J. Biochem. Mol. Biol. (formerly Korean Biochem. J.) v.28 Kang, J.H.
  29. Life Sci. v.45 Kaplan, C.S.;Petersen, E.A.;Yocum, D.;Hersh, E.M.
  30. Free Radical Biol. Med. v.6 Kelner, M.J.;Bagnell, R.;Hale, B.;Alexander, N.M. https://doi.org/10.1016/0891-5849(89)90079-8
  31. Lancet v.2 Lang, J.M.;Touraine, J.L.;Trepo, C.