Heat-Shocked Drosophila Kc Cells Have Differential Sensitivity to Translation Inhibitors

  • Han, Ching-Tack (Department of Life Science, Sogang University)
  • Received : 1996.12.17
  • Published : 1997.01.31


The heat shock response is a universal stress response observed in all organisms and cultured cells. The response is regulated at both the transcriptional and translational level. Heat shocked Drosophila melanogaster Kc cells are used as the system for the study of translational regulation. In this system non-heat shock messages are associated with polysome but are not translated in a heat shocked condition. To figure out the change in the translation machinery. the effects of translation elongation inhibitors were tested on Kc cells. The result showed that the sensitivity of translation to these drugs changed in heat shocked cells. The significant changes were the decreased inhibition of heat shock protein synthesis by cycloheximide, emetine. and puromycin. and the increased inhibition of heat shock protein synthesis by verrucarin A. implying that the translation elongation mechanism in heat shocked cells changed.


antibiotics;Drosophila melanogaster;heat shock;protein synthesis


  1. Mol. Cell. Biol. v.6 McMullin, T.;Hallberg, R.L. https://doi.org/10.1128/MCB.6.7.2527
  2. Mol. Cell. Biol. v.3 Olsen, A.S.;Triemer, D.F.;Sanders, M.M. https://doi.org/10.1128/MCB.3.11.2017
  3. J. Cell Biol. v.91 Sanders, M.M. https://doi.org/10.1083/jcb.91.2.579
  4. Cell v.22 Storti, W.P.;Scott, M.P.;Rich, A.;Pardue, M.L. https://doi.org/10.1016/0092-8674(80)90559-0
  5. J. Mol. Biol. v.84 Tissieres, A.;Mitchell, H.K.;Tracy, U.M. https://doi.org/10.1016/0022-2836(74)90447-1
  6. Science v.238 Wu, C.;Wilson, S.;Walker, B.;Dawid, I.;Paisley, T.;Zimarino, V.;Ueda, H. https://doi.org/10.1126/science.3685975
  7. Cell v.33 Ballinger, D.G.;Pardue, M.L. https://doi.org/10.1016/0092-8674(83)90339-2
  8. Eur. J. Biochem. v.64 Carrasco, L.;Jimenez, A.;Vazquez, D. https://doi.org/10.1111/j.1432-1033.1976.tb10268.x
  9. Eur. J. Biochem. v.84 Carter, C.J.;Cannon, M.
  10. Invertebrate Tissue Culture Echalier, G.
  11. The Molecular Basis of Antibiotics Action Gale, E.F.;Cundliffe, E.;Reynolds, P.E.;Richmond, M.H.;Waring, M.J.
  12. Cell v.10 Gupta, R.S.;Siminovitch, L. https://doi.org/10.1016/0092-8674(77)90140-4
  13. Cell v.26 Hallberg, R.;Wilson, P.G.;Sutton, C. https://doi.org/10.1016/0092-8674(81)90032-5
  14. J. Biol. Chem. v.263 Hausner, T.P.;Geigenmuller, U.;Nierhaus, K.H.
  15. Comp. Biochem. Physiol. v.91B Kawata, Y.;Fujiwara, H.;Ishikawa, H.
  16. Nature v.227 Laemmli, U.K. https://doi.org/10.1038/227680a0
  17. J. Cell. Physiol. v.132 Lee, Y.J.;Dewey, W.C. https://doi.org/10.1002/jcp.1041320102
  18. Nucleic Acids Res. v.23 Lin, W.M.;Chu, W.M.;Choudary, P.V.;Schmid, C.W. https://doi.org/10.1093/nar/23.10.1758