Processing of an Intracellular Immature Pullulanase to the Mature Form Involves Enzymatic Activation and Stabilization in Alkaliphilic Bacillus sp. S-1

  • Lee, Moon-Jo (Department of Biochemistry and Molecular Biology, College of Oriental Medicine, Dongguk University) ;
  • Kang, Bong-Seok (Molecular and Cellular Biology Division, KRIBB, KIST) ;
  • Kim, Dong-Soo (Department of Food Science and Technology, Kyungsung University) ;
  • Kim, Yong-Tae (Department of Chemistry, Aoyama Gakuin University) ;
  • Kim, Se-Kwon (Department of Chemistry, Bukyung University) ;
  • Chung, Kang-Hyun (Department of Food Science and Technology, Seoul National Polytechnic Univerity) ;
  • Kim, Jume-Ki (College of Oriental Medicine Dongguk University) ;
  • Nam, Kyung-Soo (College of Medicine, Dongguk University) ;
  • Lee, Young-Choon (Molecular and Cellular Biology Division, KRIBB, KIST) ;
  • Kim, Cheorl-Ho (Department of Biochemistry and Molecular Biology, College of Oriental Medicine, Dongguk University)
  • Received : 1996.11.02
  • Published : 1997.01.31


Alkaliphilic Bacillus sp. S-1 secretes a large amount (approximately 80% of total pullulanase activity) of an extracellular pullulanase (PUL-E). The pullulanase exists in two forms: a precursor form (PUL-I: $M_r$ 180,000), and a processed form (PUL-E: $M_r$ 140,000). Two forms were purified to homogeneity and their properties were compared. PUL-I was different in molecular weight, isoelectric point, $NH_2$-terminal amino acid sequence, and stabilities over pH and temperature ranges. The catalytic activities of PUL-I were also distinguishable in the $K_m$ and $V_{max}$ values for various substrates, and in the specific activity for pullulan hydrolysis. PUL-E showed 10-fold higher specific activities than PUL-I. However. PUL-I is immunologically identical to PUL-E, suggesting that PUL-I is initially synthesized and proteolytically processed to the mature form of PUL-E. Processing was inhibited by PMSF, but not by pepstatin, suggesting that some intracellular serine proteases could be responsible for processing of the PUL-I. PUL-I has a different conformational structure for antibody recognition from that of PUL-E. It is also postulated that the translocation of alkaline pullulanase(AP) in the bacterium possibly requires processing of the $NH_2$-terminal region of the AP protein. Processing of the precursor involves a conformational shift. resulting in a mature form. Therefore. precursor processing not only cleaves the signal peptide, but also induces conformational shift. allowing development of active form of the enzyme.


activation;alkaliphilic Bacillus sp. S-1;conformation;processing;pullulanase


  1. EMBO J. v.8 Lill, R.;Cunningham, K.;Brundage, L.A.;Ito, K.;Olive, D.;Wickner, W.
  2. J. Biol. Chem. v.193 Lowry, O.H.;Rosenbrough, N.H.;Farr, A.L.;Randall, D.
  3. Mol. Microbiol. v.9 Meens, J.;Frings, E.;Klose, M.;Freudl, R.
  4. J. Gen. Microbiol. v.136 Melaswien, H.;Paloheimo, M.;Hemio, L.
  5. J. Bacteriol. v.164 Muren, E.M.;Randall, L.L.
  6. Biochim. Biophys. Acta v.397 Nakamura, N.;Watanabe, K.;Horikoshi, K.
  7. Starch Staerke v.41 Nakamura, N.;Sashihara, N.;Nagayama, H.;Horikoshi, K.
  8. J. Industrial Microbiol. v.3 Obido, F.J.C.;Obi, S.K.C.
  9. J. Bioenerg. Biomembr. v.22 Oliver, D.B.;Cabelli, R.J.;Dolan, K.M.;Jarosik, G.P.
  10. Proc. Natl. Acad. Sci. USA v.87 Oliver, D.B.;Cabelli, R.J.;Dolan, K.M.;Jarosik, G.P.
  11. Enzyme Microb. Technol. v.8 Plant, A.R.;Morgan, H.W.;Daniel, R.M.
  12. Appl. Environ. Microbiol. v.56 Saha, B.C.;Lamed, R.;Lee, C.Y.;Mathupala, S.P.;Zeikus, J.G.
  13. J. Bacteriol. v.171 Smith, K.A.;Salyers, A.A.
  14. Appl. Microbiol. Biotechnol. v.21 Suzuki, Y.;Imai, T.
  15. Appl. Microbiol. Biotechnol. v.34 Suzuki, Y.;Hatagaki, K.;Oda, H.
  16. Agric. Biol. Chem. v.51 Takasaki, Y.
  17. Mol. Microbiol. v.8 van der Wolk, J.;Klose, M.;Breukink, E.;Demel, R.A.;de Kruijff, B.;Driessen, A.J.M.
  18. Nature v.210 Abdullah, M.;French, D.
  19. Biosci. Biotech. Biochem. v.56 Ara, K.;Igarashi, K.;Saeki, K.;Kawai, S.;Ito, S.
  20. Biokhimiya v.54 Balayan, A.M.;Markossian, L.S.
  21. Enzym. Biochem. Z. v.334 Bender, H.;Wallenfeld, K.
  22. Methods Enzymol. v.1 Bernfeld, P.
  23. Appl. Environ. Microbiol. v.59 Bhattacharya, M.;Plantz, B.A.;Swanson-Kobler, J.D.;Wickerson, N.W.
  24. J. Biochem. Mol. Biol. (formerly Korean Biochem. J.) v.28 Chun, S.B.;Chung, H.Y.
  25. Ann. N. Y. Acad. Sci. v.121 Davis, B.J.
  26. Trends Biochem. Sci. v.17 Driessen, A.J.M.
  27. J. Bacteriol. v.172 Fortin, Y.;Phoenix, P.;Drapeau, G.R.
  28. Techniques in Molecular Biology Gooderham, K.;Walkerand, J.M.(ed.);Gaastra, W.(ed.)
  29. Appl. Environ. Microbiol. v.49 Hyun, H.H.;Zeikus, J.G.
  30. Appl. Biochem. Biotechnol. v.33 Kambourova, M.S.;Emanuilova, E.I.
  31. FEMS Microbiol. Lett. v.116 Kim, C.H.
  32. Eur. J. Biochem. v.227 Kim, C.H.;Kim, Y.S.
  33. J. Ind. Microbiol. v.12 Kim, C.H.;Choi, H.I.;Lee, D.S.
  34. Biosci. Biotechnol. Biochem. v.57 Kim, C.H.;Choi, H.I.;Lee, D.S.
  35. Kor. Biochem. J. v.24 Kim, C.H.;Kwon, S.T.;Lee, D.S.
  36. FEMS Microbiol. Lett. v.136 Kim, C.H.;Nashiru, O.;Ko, J.H.
  37. Biochim. Biophys. Acta v.1048 Kim, C.H.;Sata, H.;Taniguchi, H.;Maruyama, Y.
  38. Agric. Biol. Chem. v.53 Kimura, T.;Horikoshi, K.
  39. Appl. Microbiol. Biotechnol. v.34 Kimura, T.;Horikoshi, K.
  40. J. Biol. Chem. v.268 Klose, M.;Schimz, K.L.;van der Wolk, J.;Driessen, A.J.M.;Freudi, R.
  41. J. Gen. Microbiol. v.135 Kuriki, T.;Imanaka, T.
  42. Agric. Biol. Chem. v.52 Kusano, S.;Nagahata, N.;Takahashi, S.I.;Fujimoto, D.;Sakano, Y.
  43. Nature v.227 Laemmli, U.K.
  44. Arch. Biochem. Biophys. Lee, M.J.;Lee, Y.C.;Kim, C.H.