Kinetic Study of the Lipase-Catalyzed Interesterification of Triolein and Stearic Acid in Nonpolar Media

  • Chi, Young-Min (Department of Agricultural Chemistry, College of Natural Resources, Korea University)
  • Received : 1996.09.23
  • Published : 1997.01.31

Abstract

The kinetics of the interesterification of triolein and stearic acid catalyzed by immobilized Rhizopus delemar lipase were studied in a batch operation. In order to clarify the mechanisms of this reaction, three models are discussed under various conditions in terms of the ratio of triolein and stearic acid. The rate constants involved in the proposed model were determined by combining the numerical Gauss-elemination method, and the trial-and-error method so as to fit the calculated results with the experimental data. The accuracy of the obtained rate constants was confirmed after they were substituted for simultaneous differential equations and the equations simulated using an adaptive step-size Runge-Kutta method. Finally, the model which agrees with the calculated results and the experimental data was selected.

Keywords

kinetics;1,3-specific lipase;modeling;rate constants;simulation

References

  1. Proc. Natl. Acad. Sci. USA v.82 Zaks, A.;Klibanov, A.M. https://doi.org/10.1073/pnas.82.10.3192
  2. Agric. Chem. Biotech. v.39 no.1 Chi, Y.M.
  3. Biotech. Bioeng. v.30 Goderis, H.L.;Ampe, G.;Feyten, M.P.;Fouwe, B.L.;Guffens, W.M.;Van Cauwenbergh, S.M.;Tobbak, P.P.
  4. Biotech. Bioeng. v.45 Goto, M.;Goto, M.;Noriho, K.;Nakashio, F.
  5. Dynamic Analysis of Enzyme Systems Hayashi, K.;Sakamoto, N.
  6. Chemtech v.6 Klibanov, A.M.
  7. J. Ferment. Technol. v.66 Kyotani, S.;Fukuda, H.;Morikawa, H.;Yamane, T. https://doi.org/10.1016/0385-6380(88)90132-X
  8. J. Ferment. Technol. v.66 Kyotani, S.;Fukuda, H.;Morikawa, H.;Yamane, T. https://doi.org/10.1016/0385-6380(88)90090-8
  9. J. Am. Oil Chem. Soc. v.60 no.2 Macrae, A.R. https://doi.org/10.1007/BF02543502
  10. Biotech. Bioeng. v.39 Malcata, F.X.;Hill, C.G. Jr.;Amundson, C.H. https://doi.org/10.1002/bit.260391003
  11. J. Am. Oil Chem. Soc. v.67 Malcata, F.X.;Reyes, H.R.;Garcia, H.S.;Hill, C.G. Jr.;Amundson, C.H. https://doi.org/10.1007/BF02541845
  12. Enzyme Microb. Technol. v.14 Malcata, F.X.;Reyes, H.R.;Garcia, H.S.;Hill, C.G. Jr.;Amundson, C.H. https://doi.org/10.1016/0141-0229(92)90135-B
  13. Enzyme Microb. Technol. v.13 Miller, D.A.;Prausnitz, J.M.;Blanch, H.W. https://doi.org/10.1016/0141-0229(91)90162-4
  14. J. Am. Oil Chem. Soc. v.61 Neidleman, S.L.;Geigert, J. https://doi.org/10.1007/BF02678783
  15. Agric. Biol. Chem. v.40 no.4 Okumura, S.;Iwai, M.;Tsujisaka, Y.
  16. Biotech. Bioeng. v.43 Reys, H.R.;Hill, C.G. Jr.
  17. J. Agric. Food Chem. v.35 Schuch, R.;Mukherjee, K.D. https://doi.org/10.1021/jf00078a035
  18. Principles of Protein Structure Schulz, G.E.;Schirmer, R.H.
  19. Bailey's Industrial Oil and Fats Products, Vol. 1 Sonntag, N.O.V.;Swern, D.(ed.)
  20. Numerical Calculation Method by FORTRAN Sugie, H.;Okazaki, A.;Adachi, Y.;Okazaki, M.
  21. Science v.224 Zaks, A.;Klibanov, A.M. https://doi.org/10.1126/science.6729453