On the Composites of poly(ethylene 2,6-naphthalate) with a Thermotropic Block Copolyester(I)

열방성 블록 코폴리에스테르와 poly(ethylene 2,6-naphthalate)의 복합재료 연구(I)

  • Choi, Jae Kon (Dept. of Polymer Science & Engineering, Chosun University)
  • 최재곤 (조선대학교 고분자공학과)
  • Received : 1997.01.28
  • Accepted : 1997.03.19
  • Published : 1997.06.10

Abstract

Thermotropic block copolyester(TLCP-b-PBN) based on poly(tetramethylene 2,6-(naphthaloyldioxy)dibenzoates)(TLCP) and poly(butylene 2,6-naphthalate)(PBN) was synthesized by solution polycondensation and melt-blended with poly(ethylene 2,6-naphthalate)(PEN) for in-situ composites. The TLCP domains showed nematic behavior in melt. The composition of block copolymer was determined from $^1H-NMR$ spectroscopy. The DSC thermogram of block copolymer revealed the presence of two major melting transitions, corresponding to the separete melting of PBN and TLCP domains. The glass transition temperature(Tg) of the PEN in the blends decreased with increasing the content of TLCP-b-PBN and the TLCP-b-PBN acted as a nucleating agent for the matrix polymers. In the 20% TLCP-b-PBN blend, well oriented TLCP fibriles were observed at temperature above the melting point of the PEN by optical microscopy. By scanning electron micrographs of cryogenically fractured surfaces of extruded blends, the TLCp domains were found to be finely and uniformely dispersed in 0.15 to $0.2{\mu}m$ size. Interfacial adhesion between the TLCP and matrix polymer was seemed to be good. Under certain condition TLCP formed a fiver structure in the PEN matrix, with thin oriented TLCP fibril in the skin region and spherical TLCP domains in the core.

Keywords

Acknowledgement

Supported by : 조선대학교

References

  1. Polym. Eng. Sci. v.27 G. Kiss
  2. Polym. Eng. Sci. v.27 K. G. Blizard;D. G. Baird
  3. J. Appl. Polym. Sci. v.60 J. H. Chang;B. W. Jo
  4. Polym. Eng. Sci. v.30 B. Y. Shin;I. J. Chung
  5. Polym. Eng. Sci. v.27 R. A. Weiss;W. Huh;L. Nicolas
  6. Polym. Eng. Sci. v.29 A. Kohli;N. Chung;R. A. Weiss
  7. Polymer v.26 A. Siegmann;A. Dagan;S. Kenig
  8. Polym. Compos. v.8 A. I. Isayev;M. J. Modic
  9. Am. Chem. Sci. Div. Polym. Prepr. v.25 E. G. Joseph;G. L. Wilkes;D. G. Baird
  10. Macromol. Sci. Phys. (B) v.17 M. Takayanagi;T. Ogata;M. Morikawa;T. J. Kai
  11. pure Appl. Chem. v.55 M. Takayanagi
  12. Polymer Liquid Crystal E. G. Joseph;G. L. Wilkes;D. G. Baird;A. Blumstein(ed.)
  13. Polymer(Korea) v.20 M. S. Bang;J. K. Choi;H. H. Choi
  14. Polymer v.34 W. C. Lee;T. Dibenedetto
  15. Polymer v.34 A. Datta;H. H. Chen;D. G. Baird
  16. Polymer(Korea) v.18 J. H. Chang;S. M. Lee;N. J. Park;B. W. Jo;M. S. Bang
  17. Polym. Eng. Sci. v.30 M. Cakmak;Y. D. Wang;Simhambhatla
  18. Polymer(Korea) v.18 L. S. Park;J. H. Yoon
  19. Polymer v.30 S. Buchner;D. Wiswe;H. G. Iachmann
  20. Macromolecules v.27 Francis Ignatious;R. W. Lenz;S. W. Kantor
  21. Polym. J. v.26 K. H. Yoon;S. C. Lee;O. O. Park
  22. Polym, Plast. Technol. Eng. v.29 B. W. Jo;J. K. Choi;J. I. Jin
  23. Polym. Eng. Sci. v.35 K. H. Yoon;S. C. Lee;O. O. Park
  24. J. Appl. Polym. Sci v.44 J. X. Li;M. S. Silverstein;A. Hiltner;E. Baer
  25. Polymer v.34 Y. Qin;D. L. Brydon;R. R. Mather;R. H. Wardmann
  26. Polym. Eng. Sci. v.35 S. H. Jang;B. S. Kim