Effects on the Oxidation Rate with Silicon Orientation and Its Surface Morphology

실리콘배향에 따른 산화 속도 영향과 표면 Morphology

  • Jeon, Bup-Ju (Dept. of Chern. Eng., Dan-kook Univ) ;
  • Oh, In-Hwan (Div. of Chern. Eng., Korea Institute of Science and Technology) ;
  • Um, Tae-Hoon (Div. of Chern. Eng., Korea Institute of Science and Technology) ;
  • Jung, Il-Hyun (Dept. of Chern. Eng., Dan-kook Univ)
  • 전법주 (단국대학교 화학공학과) ;
  • 오인환 (한국과학기술연구원 화공연구부) ;
  • 임태훈 (한국과학기술연구원 화공연구부) ;
  • 정일현 (단국대학교 화학공학과)
  • Received : 1997.01.06
  • Accepted : 1997.03.20
  • Published : 1997.06.10

Abstract

The $SiO_2$ films were prepared by ECR(electron cyclotron resonance) plasma diffusion method, Deal-Grove model and Wolters-Zegers-van Duynhoven model were used to estimate the oxidation rate which was correlated with surface morphology for different orientation of Si(100) and Si(111). It was seen the $SiO_2$ thickness increased linearly with initial oxidation time. But oxidation rate slightly decrease with oxidation time. It was also shown that the oxidation process was controlled by the diffusion of the reactive species through the oxide layer rather than by the reaction rate at the oxide interface. The similar time dependency has been observed for thermal and plasma oxidation of silicon. From D-G model and W-Z model, the oxidation rate of Si(111) was 1.13 times greater than Si(100) because Si(111) had higher diffusion and reaction rate, these models more closely fits the experimental data. The $SiO_2$ surface roughness was found to be uniform at experimental conditions without etching although oxidation rate was increased, and to be nonuniform due to etching at experimental condition with higher microwave power and closer substrate distance.

Keywords

References

  1. J. Vac. Sci. Technol. v.A2 K. Miyake;S. Kimura;T. Warabisako;H. Sunami;T. Tokuyama
  2. J. Appl. Phys. v.60 J. Batey;E. Tierney
  3. J. Appl. Phys. v.63 G. G. Fountain;R. A. Rudder;S. V. Hattangady;R. J. Markunas;P. S. Lindorme
  4. J. Vac. Sci. Technol. v.A8 G. T. Salbert;D. K. Reinhard;J. Asmussen
  5. J. Electrochem. Soc. v.138 K. Eljably;A. Reisman
  6. J. Vac. Sci. Technol. v.B4 T. Ono;M. Oda;C. Takakashi;S. Matsuo
  7. J. Electrochem. Soc. v.132 H. Z. Massoud;J. D. Plummer;E. A. Irene
  8. J. Appl. Phys. v.62 C. Vinkier;P. Coeckelberghs;G. Stevens;M. Heyns;S. Dejaegere
  9. J. Electrochem. Soc. v.141 C. Lee;D. B. Graves
  10. J. Appl. Phys. v.36 B. E. Deal;A. S. Grove
  11. J. electrochem. Soc. v.127 W. A. Tiller
  12. J. Electrochem. Soc. v.132 S. Kimura;E. Murakami;K. Miyake;T. Warabiska;H. Sunami;T. Tokuyama
  13. J. Appl. Phys. v.38 J. Kraitchma
  14. J. electrochem. Soc. v.131 F. P. Fehlner
  15. J. Electrochem. Soc. v.125 H. Horiuhi;Y. Kamigaki;T. Hagiwara
  16. J. Appl. Phys. v.65 D. R. Wolters;A. T. Zeger-van Duynhoven
  17. J. Vac. Sci. Technol. v.A8 D. A. Carl;D. W. Hess;M. A. Lieberman
  18. J. Electrochem. Soc. v.133 L. Faraone;G. Harbeke
  19. J. Appl. Phys. v.52 P. D. Hahn;M. Henzler
  20. Appl. Phys. Lett. v.57 W. Ting;H. Hwang;J. Lee;D. L. Kwong