Gas Permeation Properties of the Ceramics-Silicone Composite Membranes

세라믹-실리콘 복합막의 기체투과 특성

  • Hwang, Seung-No (Dep. of Chern. Eng., College of Eng., Dankook Uillv) ;
  • Yang, Jae-Gun (Institute of Org-Silicon Technology, Dankook Uillv) ;
  • Jung, Il-Hyun (Dep. of Chern. Eng., College of Eng., Dankook Uillv)
  • 황승노 (단국대학교 공과대학 화학공학과) ;
  • 양재건 (단국대학교 유기규소 연구소) ;
  • 정일현 (단국대학교 공과대학 화학공학과)
  • Received : 1996.12.27
  • Accepted : 1997.03.19
  • Published : 1997.06.10

Abstract

Ceramic membranes are prepared by using molding method of the glass materials, ceramic-silicone composite membranes are synthesized with immersing silicone compound of sodiumate, $S_3$-Al, S3and we investigated the properties of gas permeation. Ceramic membranes and ceramic-sodiumate membranes that has been prepared were identified as porous structure and ceramic-$S_3$-Al membranes and ceramic-$S_3$ membranes were showed with dense structure by immersion of silicone compounds. Gas permeation properties through the ceramic membranes and ceramic-sodiumate membranes decreased with increasing temperature and linearly increased with increasing pressure, ceramic-$S_3$-Al membranes and ceramic-$S_3$ membranes increased with increasing temperature and pressure effect was low. Permeation rate was found out high value with ceramic membranes and in order of ceramic-sodiumate membranes, ceramic-$S_3$-Al membranes and ceramic-$S_3$ membranes, but selectivity reversed in the order. Gas permeation mechanism through the ceramic membranes and ceramics-sodiumate composite membrane decreased with increasing temperature, suggesting an Knudsen diffusion mechanism, but ceramic-$S_3$-Al composite membranes and ceramic-$S_3$ composite membranes showed an activated diffusion by which gas permeation rates through the membranes increased with an increase in temperature.

Keywords

References

  1. Membrane Handbook W. S. Winston ho;K. Sirker
  2. J. Mem. Sci. v.29 S. G. Kimura;W. R. Browall
  3. Membrane Separations Technology Principles and Applications R. D. Noble
  4. Basic principles of Membrane Technology M. Mulder
  5. J. Mem. Sci. v.75 M. Bhandarkar;A. B. Shelekhin;A. G. Dixon ;Y. H. Ma
  6. J. Mem. Sci. v.66 R. J. R. Ulhorn;K. Keizer;A. J. Burggraaf
  7. Ind. Eng. Chem. Res. v.31 C. E. Megris;J. H. E. Glezer
  8. Scp. Sci. and Tech. v.18 J. E. Koresh;A. Sofer
  9. Chem. Eng. Sci. v.51 M. Sheintuch;R. M. Dessau
  10. J. Men. Sci. v.41 S. Sugawara;M. Konno;S. Saito
  11. J. Mem. Sci. v.42 T. okubo;H. Inoue
  12. AIChE J. v.35 T. Okudo;H. Inoue