A Study on the Catalytic Reduction of Carbon Dioxide by Methane

메탄에 의한 이산화탄소의 환원반응에 관한 연구

  • Hong, Seong-Soo (Department of Chemical Engineering, College of Engineering, Pukyong National University) ;
  • Yang, Jin-Seop (Department of Chemical Engineering, College of Engineering, Pukyong National University) ;
  • Kim, Byung-Kee (Department of Chemical Engineering, College of Engineering, Pukyong National University) ;
  • Ju, Chang-Sik (Department of Chemical Engineering, College of Engineering, Pukyong National University) ;
  • Lee, Gun-Dae (Department of Surface Coating Engineering, College of Engineering, Pukyong National University)
  • 홍성수 (부경대학교 공과대학 화학공학과) ;
  • 양진섭 (부경대학교 공과대학 화학공학과) ;
  • 김병기 (부경대학교 공과대학 화학공학과) ;
  • 주창식 (부경대학교 공과대학 화학공학과) ;
  • 이근대 (부경대학교 공과대학 표면공학과)
  • Received : 1997.05.13
  • Accepted : 1997.06.20
  • Published : 1997.08.10


We have studied the reforming of carbon dioxide with methane over various supported nickel catalysts. The nickel supported on natural zeolite showed the highest activity and the nickel on acidic support showed higher activity and slow deactivation compared to nickel on basic support. The activity of nickel on natural zeolite increased with increasing loading ratio and showed almost constant activity above 10wt.% loading of nickel. The conversion and yield of products were affected by the mole ratio of reactants and the highest yields of CO and $H_2$ were obtained at $CH_4/CO_2=1$. The deactivation of catalyst was caused by deposition of coke which was formed by the decomposition of methane. The shape of coke was shown to be whisker tripe carbon, and it brought out the slow deactivation of catalyst.



Supported by : 한국학술진흥재단


  1. Catalysis v.7 S. E. Park;J. S. Chang
  2. Proc. 1st Papan-Ec D. Gavin;C. Bower
  3. Sol. Energy v.24 T. A. Chubb
  4. Appl. Catal. v.62 J. T. Richardson;S. A. Paripatyadar
  5. Hydro. process v.64 S. Teuner
  6. Methane Conversion D. M. Bibby;C. D. Chang;R. F. Howe;S. Yurchak
  7. ACS Symp. Ser Catalytic Actvation of CO₂ W. M. Ayers(Ed.)
  8. Catal. Lett. v.11 J. S. H. Parera;J. W. Couves;G. Sanker;J. M. Thomas
  9. Energy M. Levy;R. Rubin;H. Rosin;R. Revutan
  10. J. Catal. v.144 J. R. Rostrup-Nielsen;J. H. Bak Hansen
  11. Letters to Nature A. T. Ashcroft;A. K. Cheeltham;M. L. H. Green;D. F. Vermon
  12. Catal. Today v.13 D. F. Vermon;M. L. H. Green;A. K. Cheertham;A. T. Ashcroft
  13. Catal. Today v.24 S. B. Tang;F. L. Qiu;S. J. Lu
  14. Catal. Today v.21 H. M. Swaan;V. C. H. Kroll;G. A. Martin;C. Mirodatos
  15. Appl. Catal. v.31 K. Fujimoto;L. Shikada
  16. Appl. Catal., A v.145 J. S. Chang;S. E. Park;H. Chon
  17. Stud. Surf. Sci. Catal. v.36 M. Masai(et al.)
  18. Chem. Ing. Tech. v.63 K. Huder
  19. Catal. Today v.21 A. Guerrero-Ruiz;A. Sepulveda-Escribano;I. Rodriguez-Ramos
  20. Catal. Lett. v.43 Y. H. Hu;E. Ruckenstein
  21. J. Chem. Soc. Chem. Commun. Z. Zhang;X.E. Verykios
  22. J. Catal. v.44 M. A. Vannice
  23. Chem. Eng. Sci. v.43 A. M. Gadalla;B. Bower
  24. Principles of Catalyst Development J. T. Richard
  25. Chem. Lett. O. Yamazaki;T. Nozaki;K. Omata;K. Fujimoto
  26. Catal. Lett. v.28 G. J. Kim;D. S. Cho;K. H. Kim;J. H. Kim
  27. Catal. Lett. v.22 J. B. Claridge;M. L. B. Green;S. C. Tsang;A. P. E. York;A. T. Ashcroft;P. D. Battle