• Published : 1997.12.01


Category theory gives a convenient language for the study of mathematical structures besides its own study. In this paper, we investigate how the abstract structure theory emerged in 1930s affects the study in Topology and eventually becomes a rudiment for the category theory. Moreover, various extensions and universal mapping problems were put in their proper perspective as reflections by the category theory and by its duality principle, coreflections become an interesting subject in Topology, both of which give rise to a new discipline of the categorical topology.


  1. Abstract and Concrete Categories J. Adamek;H. Herrlich;G. E. Strecker
  2. Math. Z v.34 Stetige Funktionen in topologischen Raumen R. Baer;F. Levi
  3. Math. Nach v.13 Uber nulldimensionale Raume B. Banaschewski
  4. Springer Lect. Notes in Math v.469 Continuous Convergence on C(X) E. Binz
  5. Ann. Sci. Ecole Normale Sup v.12 Sur quelque points de la theorie des fonctions E. Borel
  6. Theory of Sets N. Bourbaki
  7. General Topology, Part I, Part II N. Bourbaki
  8. Math Ann v.17 Uber unendliche, lineare Punktmanichfatigkeiten II G. Cantor
  9. Compt. Rendue Acad v.205 Theorie des filtres H. Cartan
  10. Comp. Rendue Acad v.205 Filtres et Ultrafiltres H. Cartan
  11. Ann. Math v.38 On bicompact spaces E. Cech
  12. Mat. Sbornik v.31 Geometry of proximity V. A. Efremovic
  13. Trans. Amer. Math Soc. v.58 General theory of natural equivalences S. Eilenberg;S. Mac Lane
  14. Bull. Acad. Pol. Sci. Ser. Sci. Math. Astr. Phys v.6 On E-compact spaces R. Engelking;S. Mrowka
  15. Math. Ann v.137 Limesraume H. R. Fischer
  16. Fund. Math v.57 Spaces in Which sequences suffice S. P. Franklin
  17. Fund. Math v.61 Spaces in which sequences suffice II S. P. Franklin
  18. Rend. Circ. Mat. Palermo v.22 Sur quelques points du calcul fonctionnel M. Frechet
  19. Thesis, Princeton Univ. Functor Theory P. Freyd
  20. Abelian Categories P. Freyd
  21. J. Pure Appl. Alg v.2 Categories of continuous functors P. Freyd;G. M. Kelly
  22. Rings of Continuous Functions L. Gilman;M. Jerison
  23. Illinois J. Math v.7 University locally connected refinements A. M. Gleason
  24. Tohoku Math J v.9 Sur quelques points d'algebre homologique A. Grothendieck
  25. Grundzuge der Mengenlehre F. Hausdorff
  26. Math. Z v.96 Fortsetzbarkeit stetiger Abbildungen und Kompaktheitsgrad topologischer Raume H. Herrlich
  27. Math. Z v.96 δ-kompakte Raume H. Herrlich
  28. Springer Lect. Notes in Math v.78 Topolgische Reflexionen und Coreflexionen H. Herrlich
  29. Trans. Amer. Math. Soc. v.146 Limit-operators and topological coreflections H. Herrlich
  30. Gen. Topol. Appl v.1 Categorical topology H. Herrlich
  31. Gen. Topol. Appl v.4 A concept of nearness H. Herrlich
  32. Math. Centre Tracts v.52 Topological Structures I H. Herrlich
  33. Gen. Topol. Rel. Mod. Anal H. Herrlich;Algebra V;J. Novak(ed0
  34. Category Theory H. Herrlich;G. E. Strecker
  35. Trnas. Amer. Math. Soc v.157 Coreflective subcategories H. Herrlich;G. E. Strecker
  36. Fund. Math v.73 Coreflective subcategories in general topology H. Herrlich;G. E. Strecker
  37. Categorical Topology, Handbook of the History of General Topology v.1 H. Herrlich;G. E. Strecker;C. E. Aull(ed);R. Rowen(ed)
  38. Trans. Amer. Math. Soc v.64 Rings of real-valued continuous functions E. Hewitt
  39. Grundlagen der Geometrie(7th ed) D. Hilbert
  40. Gen. Topol. Appl v.3 On k-compactlike spaces and reflective subcategories S. S. Hong
  41. Lect. Notes in Math, Springer v.378 Limit-operators and reflective subcategories S. S. Hong
  42. Canad. J. Math v.9 Some remarks concerning categories and subspaces J. R. Isbell
  43. Rozp. Math v.36 Subobjects, adequacy, completeness and categories of algebras J. R. Isbell
  44. Amer. Math. Soc. Providence Uniform spaces J. R. Isbell
  45. Isz. Akad. Nauk SSR v.23 Contiguity spaces and bicompact extensions V. M. Ivanova;A. A. Ivanov
  46. Proc. Imp. Acad. v.20 Free topological groups and infinite direct products of topological groups S. Kakutani
  47. Trans. Amer. Math. Soc v.87 Adjoint functors D. M. Kan
  48. J. Austral. Math. Soc. v.9 Monomorphisms, epimorphisms, and pull-backs G. M. Kelly
  49. Illinois J. Math v.12 Full reflective subcategories and generalized covering spaces J. F. Kennison
  50. Proc. Nat. Acad. Sci. v.34 Groups, categories and duality S. Mac Lane
  51. Dokl. Akad. Nauk SSR v.31 On free topological groups A. A. Markoff
  52. Akad. Nauk SSR, ser. math v.9 On free topological groups, Izu A. A. Markoff
  53. Music, The Arts, and Ideas L. B. Meyer
  54. Theory of Categories B. Mitchell
  55. Amer. J. Math v.44 A general theory of limits E. H. Moore;H. L. Smith
  56. Bull. Acad. Polon. Sci. Cl v.III4 On universal spaces S. Mrowka
  57. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys v.6 A property of Hewitt-extension uX of topological spaces S. Mrowka
  58. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys v.14 On E-compact spaces II S. Mrowka
  59. Acta Math v.120 Further results on E-compact spaces I S. Mrowka
  60. Gesammelte mathematische Werke(2nd ed) B. Riemann
  61. Berichte aus Ungarn v.24 Die genesis des Raumbegriffs, Math, u Naturwiss F. Riesz
  62. Math. Z v.117 Diagonalisierunspaare I C. M. Ringel
  63. Bull. Amer. Math. Soc v.54 On universal mappings and free topological groups P. Samuel
  64. Rozp. Mat. v.35 Projectivity, injectivity, and duality Z. Semadeni
  65. Math. Z v.86 Universal solutions and adjoint homomorphisms J. Sonner
  66. Trans. Amer. Math. Soc. v.41 Applications of the theory of Boolean rigns to general topology M. H. Stone
  67. Math. Ann v.88 Beitrage zur allgemeinen Topologie I H. Tietze
  68. Comm. Math. Univ. Carolinae v.3 On the theory of categories V. Trnkova
  69. Math. Ann v.102 Uber die Topologische Erweiterung von Raumen A. Tychonoff
  70. Math. Ann v.111 Uber einen Funktonenraum A. Tychonoff
  71. Math. Ann v.111 Ein Fixpunktsatz A. Tychonoff
  72. Act. Sci. Ind. Sur les espaces a structure uniforme et sur la topologie generale A. Weil
  73. Scripta Math v.3 Emmy Noether H. Weyl
  74. Historia Math v.10 순서와 위상구조의 관계 홍성사;홍영희