Effects of Protein Unfolding and Soluble Aggregates Formation on the Gel Strength of Whey Proteins

  • Park, Moon-Jung (Bioproducts Research Center, Yonsei University) ;
  • Michael E. Mangino (Department of Food Science and Technology, The Ohio State University)
  • Published : 1997.12.01


Heat-induced gelation is an important functional property of whey proteins. Preheating of calcium reduced whey was reported to increase gel strength. 5% whey-protein solutions were preheated at pH7 and at various temperatures(60~8$0^{\circ}C$) for 15 minutes. The amount of soluble aggregates and denaturation enthalpy of preheated whey proteins were measured. Preheating temperature was negatively correlated with denaturation enthalpy($R^2$=0.857, P=0.08) and positive with the amount of soluble aggregates($R^2$=0.921, P=0.002). Denaturation enthalpy was negatively correlated with gel strength($R^2$=0.93, P=0.002). Soluble aggregates and gel strength were positively correlated($R^2$=0.972, P=0.0003). The formation of three dimensional gel network requires controlled protein denaturation and aggregation. Since preheating leads to the partial denaturation of proteins and the formation of soluble aggregates, preheated whey proteins have a higher gel strength than non-preheated one.