Cascaded Raman fiber amplifier operating at using WDM couplers

  • Chang, Do-Il (Department of Physics, Korea advanced Insitute of Science and Technology) ;
  • Kong, Hong-Jin (Department of Physics, Korea advanced Insitute of Science and Technology) ;
  • Chernikov, S.V. (Femtosecond Optics Group, Imperial College, UK) ;
  • Guy, M.-J. (Femtosecond Optics Group, Imperial College, UK) ;
  • Taylor, J. R. (Femtosecond Optics Group, Imperial College, UK)
  • Received : 1997.07.07
  • Published : 1997.09.01


We report effcient cascaded Raman generation and signal amplification at achieved in a ring resonator constructed solely from fiber components, i.e. fusion WDM couplers. Low-loss single-mode fiber with moderate $GeO_2$ content (18 mole %) is used as an active medium and pumped by a Nd:YAG laser at In a resonant cascaded geometry, this generates the third Stokes line at, which acts as a pump for signal wavelength around A DFB laser operating at is used to provide an input signal. An output signal powers up to 20 dBm (100 mW) with a 28 dB Raman gain are attained, where the Nd:YAG pump power is 3.4 W. It is also shown experimentally that it is important to use optical filters to suppress feedback from the resonator, permitting high Raman gain and good signal quality.



  1. A. Bjarklev, "Optical fiber amplifiers: Design and Sys-tem Applications", (Artech House Inc., 1993)
  2. E. Desurvire, "Erbium-doped fiber amplifiers: princi-ples and applications", (John Wiley & Sons Inc., New York, 1994)
  3. S. T. Davey and P. W. France, Br. Telecom Technol. J. 7, 58 (1989)
  4. R. Wyatt, T. Whitley, S. Davey and D. Szebesta, Proc. SPIE Int. Soc. Opt. Eng.1789, 170 (1992)
  5. T. J. Whitley, J. Lightwave Technol. 13, 744 (1995)
  6. N. Tomita, K. Kimura, H. Suda, M. Shimizu, M. Ya-mada and Y. Ohishi, IEEE Photon. Technol. Lett. 6, 258 (1994)
  7. M. Yamada, M Shimizu, H. Yoshinaga, K. Kikushima, T. Kanamori, Y Ohishi, Y. Terunuma, K. Oikawa and S. Sudo, Electron. Lett.31, 806 (1995)
  8. S. Sanders, K. Dzurko, R. Parke, S. O'Brien, D.F. Welch, S.G. Grubb, G. Nykolak and P.C. Becker, Elec-tron. Lett. 32, 343 (1996)
  9. G. P. Agrawal, "Nonlinear fiber optics", (Academic Press, 1995) chapter 8
  10. K. Nakamura, M. Kimura, S. Yoshida, T. Hidaka, and Y. Mitsuhashi, J. Lightwave Technol. LT-2, 379 (1984)
  11. M. Nakazawa, T. Nakashima and S. Seikai, J. Opt. Soc. Am. B. 2, 515 (1985)
  12. L. F. Mollenauer, R. H. Stolen and M. N. Islam, Opt. Lett. 10, 229 (1985)
  13. M. Nakazawa, M. Tokuda, Y. Negishi and N. Uchiba, J. Opt. Soc. Am B. 1, 80 (1984)
  14. E. M. Dianov, D. G. Fursa, A. A. Abramov, M. I. Belo-volvo, M. M. Bubnov, A. V. Shipuliu, A. M. Prokhorov, G. G. Devyatykh, A. N. Gur'yanov and V. F. Khopin, Sov. J. Quantum Electron. 24, 749 (1994)
  15. S. G. Grubb, T. Erdogan, V. Mizrahi, T. Strasser, W. Y. Cheung, W. A. Reed, P. J. Lemaire, A. E. Miller, S. G. Kosinski, G. Nykolak and P. C. Becker, Proc. ECOC' 94, paper PD3, (1994)
  16. S. V. Chernikov, Y. Zhu, R. Kashyap and J. R. Taylor, Electron. Lett. 31, 472 (1995)
  17. E. M. Dianov, V. 1. Karpov, M. V. Grekov, A. M. P'rokhorov, V. F. Kamalov and E. V. Slobodchikov, Elec-tron. Lett. 32, 1481 (1996)
  18. P. B. Hansen, A. J. Stentz, L. Eskilden, S. G. Grubb, T. A. Strasser and J. R. Pedrazzani, Electron, Lett. 32, 2164 (1996)
  19. A. S. Gouvenia-Neto, A. S. L. Gomes, J. R. Taylor, B. J. Ainslie and S. P. Craig, Electron, Lett. 23, 1034 (1987)
  20. Th. Lasser, H. Gross, W. Ulrich, P. Greve, and H.J. Niederwald, Proc. SPIE. Int. Soc. Opt. Eng. 1132, 36(1989)
  21. D. I. Chang, J. Y. Lee, and H. J. Kong, Appl. Opt.36, 1177 (1997)
  22. T. Nakashima, S. Seikai and M. Nakazawa, Opt.Lett.l0, 1420 (1985)
  23. J. M. Gabriagues, Proc. SPIE Int Soc. Opt. Eng .1171, 43 (1989)
  24. I. Andonovic and D. Uttamchandani, "Principles of modern optical systems", (Artech House Inc., 1989) chap-ter 9
  25. G. Cancellieri, "Single-mode optical fiber measure-ment: characterization and sensing", (Artech House Inc.,1993) chapter 4