A COMPARISON OF MAXIMAL COLUMN RANKS OF MATRICES OVER RELATED SEMIRINGS

  • Song, Seok-Zun
  • Published : 1997.02.01

Abstract

Let A be a real $m \times n$ matrix. The column rank of A is the dimension of the column space of A and the maximal column rank of A is defined as the maximal number of linearly independent columns of A. It is wekk known that the column rank is the maximal column rank in this situation.

Keywords

linearly independent;maximal column rank

References

  1. Matrix Analysis R. A. Horn;C. R. Johnson
  2. Linear Algebra Appl. v.221 Rank comparisons L. B. Beasley;S. J. Kirkland;B. L. Shader
  3. Fuzzy Sets and Systems v.62 Linear operators that preserve column rank of fuzzy matrices S. Z. Song
  4. Linear and Multilinear Algebra v.36 Linear operators that preserve maximal column rank of Boolean matrices S. G. Hwang;S. J. Kim;S. Z. Song
  5. Linear Algebra Appl. v.101 Semiring rank and column rank L. B. Beasley;N. J. Pullman
  6. Linear Algebra Appl. v.31 A comparison of nonnegative real ranks and their preservers L. B. Beasley;S. Z. Song
  7. Linear Algebra Appl. v.65 Nonnegative rank preserving operators L. B. Beasley;N. J. Pullman
  8. Proc. Amer. Math. Soc. v.119 Linear operators that preserve column rank of Boolean matrices S. Z. Song
  9. J. Korean Math. Soc. v.32 Column ranks and their preservers of general Boolean matrices S. Z. Song;S. G. Lee