• Pak, Jin-Suk ;
  • Jung, Seoung-Dal
  • Published : 1997.02.01


In the study of a manifold M, the exterior algebra $\Lambda^* M$ plays an important role. In fact, the de Rham cohomology theory gives many informations of a manifold. Another important object in the study of a manifold is its Clifford algebra (Cl(M), generated by the tangent space.


Hilbert complex;Cliffore algebra;Ciffore $L^2$-cohomology group;$L^2$-harmonic space;Dirac operator;Spinor bundle


  1. J. Funct. Anal. v.108 Hillbert complexes J. Bruning;M. Lesch
  2. Ann. of Math. v.60 A special Stocks' theorem for complete Riemannian manifolds M. Gaffney
  3. Manuscripta Math. v.69 A note on Bochner type theorems for complete manifolds P. Berard
  4. C. R. Acad. Sci. Paris, Series A-B v.257 Spineurs harmonigues A. Lichnerowicz
  5. Publ. Math. I. H. E. S. v.58 Positive scalar curvature and the Dirac operator on complete Riemannian manifolds M. Gromov;H. B. Lawson, Jr.
  6. Adv. in Math. v.14 Harmonic spinors N. Hitchin
  7. J. Funct. Anal. v.52 Analysis of the Laplacian on the complete Riemannian manifold R. S. Strichartz
  8. Amer. J. Math. v.102 Clifford and spinor cohomology of Kahler manifolds M. L. Michelsohn
  9. Topology and Asymtotic methods Elliptic operators J. Roe
  10. Indiana Univ. Math. J. v.22 Essential self-adjointness for the Dirac operator and its square J. A. Wolf
  11. Spin geometry H. B. Lawson, Jr.;M. L. Michelsohn
  12. Topology v.3 Clifford modules M. F. Atiyah;R. Bott;A. A. Shapiro
  13. Acta Appl. Math. v.12 Generalized Bochner theorems and the spectrum of complete manifolds K. D. Elworthy;S. Rosenberg