CIRCULAR DISTORTION AND THE DOUBLE DISK PROPERTY OF CURVES

  • Kim, Ki-Won
  • Published : 1997.02.01

Abstract

Suppose that D is a domain in the extended complex plane $\overline{C} = C \cup {\infty}$. For each $z_0 \in C$ and $C < r < \infty$, we let $B(z_0, r) = {z \in C : $\mid$z - z_0$\mid$ < r}$ and $S(z_0, r) = \partial B(z_0, r)$. For non-empty sets A, $B \subset \overling{C}$, diam (A) is the diameter of A and d(A, B) is the distance of A and B.

Keywords

circular distorition;the double disk property of curves;quasidisk;quasicircle;John disk

References

  1. Properties of John disks, University of Michigan Ph.D. Thesis K. K. Ryu
  2. Math. Scand. v.65 The quasihyperbolic metric in John doamins F. W. Gehring;K. Hag;O. Martio
  3. Rev. Roumaine Math. Pures Appl. v.32 Eine geometrische Eigenschaft quasikonformer Kreise R. Kunau
  4. Ann. Acad. Sci. Fenn. Ser. A I Math. v.14 Circular distortion of curves and quasicircles F. W. Gehring;C. Pommerenke
  5. Acta Math. v.109 Quasiconformal reflections L. V. Ahlfors
  6. Exposition. Math. v.9 John disks R. Nakki;J. Vaisala
  7. Ann. Acad. Sci. Fenn. Ser. A I Math. v.4 Injectivity theorems in plane and space O. Martio;J. Sarvas
  8. Adv. in Math. v.46 Boundary behavior of harmonic functions in non-tangentially accessible domain D. S. Jerison;C. E. Kenig
  9. Characteristic Properties of Quasidisks F. W. Gehring
  10. Quasiconformal mappings in the plane O. Lehto;K. Virtanen