Expression of CyI Cytoplasmic Actin Genes in Sea Urchin Development

  • Hahn, Jang-Hee (Cancer Research Institute, School of Medicine, Seoul National University) ;
  • Raff, Rudolf A. (Institute for Molecular and Cellular Biology, Department of Biology, Indiana University)
  • Received : 1996.08.08
  • Published : 1996.09.30

Abstract

We present a study of evolutionary changes in expression of actin genes among closely related sea urchin species that exhibit different modes of early development. For this purpose, polyclonal antisera raised against peptides from the carboxyl terminus of the HeCyI cytoskeletal actin of Heliocidaris erythrogramma were used. H. erythrogramma is a direct developing sea urchin that proceeds from embryonic to adult stages without an intervening feeding larval stage. Expression patterns of the CyI actin isoform were compared with those of Heliocidaris tuberculata and to a related sea urchin Strongylocentrotus purpuratus, which both produce a feeding pluteus larval stage. The CyI actin of all three species is expressed in the same cell types. However, its expression patterns have been changed with reorganization of early cell lineage differentiation, which is apparent among the three species. Thus. evolutionary changes in CyI actin gene expression patterns are correlated with not only phylogenetic relationship, but developmental mode. The implication of this observation is that evolutionary changes in expression patterns of histospecific genes may underlie the emergence of novel developmental processes.

Keywords

CyI actin gene;developmental mode;evolution of gene expression;Heliocidaris

References

  1. Gene v.153 Hahn, J.H.;Kissinger, J.C.;Raff, R.A. https://doi.org/10.1016/0378-1119(94)00775-N
  2. Antibodies: A Laboratory Manual Harlow;Lane
  3. Development v.110 Henry, J.J.;Wray, G.A.;Raff, R.A.
  4. Development v.114 Henry, J.J.;Klueg, K.M.;Raff, R.A.
  5. Genetics v.114 Hightower, R.C.;Meagher, R.B.
  6. Dev. Biol. v.131 Kimble, M.;Incardona, J.P.;Raff, E.C.
  7. Nature v.227 Laemmli, U.K. https://doi.org/10.1038/227680a0
  8. J. Mol. Biol. v.188 Lee, .J.J.Calzone, F.J.;Britten, R.J.;Angerer, R.C.;Davidson, E.H.
  9. Plant Cell v.2 McLean, B.G.;Eubanks, S.;Meagher, R.B. https://doi.org/10.1105/tpc.2.4.335
  10. Dev. Biol. v.119 Raff, R.A. https://doi.org/10.1016/0012-1606(87)90201-6
  11. BioAssays v.14 Raff, R.A. https://doi.org/10.1002/bies.950140403
  12. Dev. Biol. v.101 Shott, R.J.;Lee, J.J.Britten, R.J.;Davidson, E.H. https://doi.org/10.1016/0012-1606(84)90143-X
  13. Evolution v.32 Strathmann, R.R. https://doi.org/10.1111/j.1558-5646.1978.tb04642.x
  14. Genes Dev. v.4 Thiebaud, P.;Goodstein, M.;Calzone, F.J.;Theze, N.;Britten, R.J.;Davidson, E.H. https://doi.org/10.1101/gad.4.11.1999
  15. Proc. Natl. Acad. Sci. USA v.76 Towbin, H.;Staehlin, T.;Gordon, J. https://doi.org/10.1073/pnas.76.9.4350
  16. Aust. J. Zool. v.23 Williams, D.H.;Anderson, D.T.
  17. Dev. Biol. v.132 Wray, G.A.;Raff, R.A. https://doi.org/10.1016/0012-1606(89)90242-X
  18. Deb. Biol. v.141 Wray, G.A.;Raff, R.A. https://doi.org/10.1016/0012-1606(90)90100-W
  19. Trends Ecol. Evol. v.6 Wray, G.A.;Raff, R.A. https://doi.org/10.1016/0169-5347(91)90121-D
  20. J. Mol. Biol. v.214 Arevalo, M.A.;Nieto, J.M.;Andreu, D.;Andreu, J.M. https://doi.org/10.1016/0022-2836(90)90150-K
  21. Dev. Biol. v.87 Bruskin, A.M.;Bedard, P.A.;Tyner, A.L.;Showman, R.N.;Klein, W.H. https://doi.org/10.1016/0012-1606(81)90154-8
  22. Int, Rev. Cytol. v.103 Bulinski, J.C.
  23. J. Mol. Biol. v.188 Cox, K.H.;Angerer, L.M.;Lee, J.J.;Davidson, E.H.;Angerer, R.C. https://doi.org/10.1016/0022-2836(86)90301-3
  24. Gene Activity in Early Development Davidson, E.H.
  25. Development v.105 Davidson, E.H.
  26. Of URFs and ORFs Doolittle, R.F.
  27. Cell v.58 Dynam, W.S. https://doi.org/10.1016/0092-8674(89)90393-0