Heterogeneously Catalyzed Oxidations of Cyclopentene and of 1-Pentene

시클로펜텐과 1-펜텐의 불균일 촉매 산화반응

  • Yang, Hyun S. (Dept. of Fine Chem. Eng. and Chemistry, College of Eng., Chungnam Nat'l Univ.) ;
  • Kim, Young H. (Dept. of Fine Chem. Eng. and Chemistry, College of Eng., Chungnam Nat'l Univ.)
  • 양현수 (충남대학교 공과대학 정밀공업화학과) ;
  • 김영호 (충남대학교 공과대학 정밀공업화학과)
  • Received : 1996.04.06
  • Accepted : 1996.07.30
  • Published : 1996.10.10


Oxidations of cyclopentene and of 1-pentene with air have been studied on a V/Mo/P/Al/Ti-mixed oxide catalyst in a fixed bed integral reactor. At high levels of conversion maleic anhydride was in each case produced as the major organic product, along with minor amounts of phthalic anhydride and, only starting from 1-pentene, also of citraconic anhydride. At lower levels of conversion a total of 30 organic products have been identified, some of which may be intermediates on the way from the substrates to the three anhydrides mentioned above. Based on the dependence of selectivities of the organic products on conversion, reaction schemes for the formation of maleic anhydride, phthalic anhydride and citraconic anhydride have been proposed. Oxidation at $310^{\circ}C$ led to increasing conversions and selectivities for maleic anhydride with decreasing space velocities. The highest selectivities for maleic anhydride were obtained at conversion of ca. 100%. Oxidation at a constant space velocity of $2{\cdot}10^4h^{-1}$ led to increasing conversions with increasing temperatures in the range of $300^{\circ}C{\sim}420^{\circ}C$, while the selectivity for maleic anhydride passed through a maximum value of ca. 39% at $370^{\circ}C$ in the oxidation of cyclopentene and a maximum value of ca. 30% at $400^{\circ}C$ in the oxidation of 1-pentene.



Supported by : 한국과학재단


  1. Chemische Technologie(4th ed.) v.5 K. Winnacker;D. Kuchler
  2. Erdol und Kohle, Erdgas, Petrochemie v.38 B. Schleppinghoff;B. Schulwitz
  3. Ullmanns Encyclopedia of Industrial Chemistry(5th ed.) v.A8 K. Griesbaum;D. Honicke
  4. Chem.-Ing.-Tech. v.62 R. Bockler;G. Cordes;H. Smolen
  5. Erdol und Kohle-Endgas v.35 K. Griesbaum;D. Honicke
  6. Chem.-Ing.-Tech. v.54 D. Honicke;K. Griesbaum
  7. Erdol Kohle, Erdgas, Petrochem. v.37 D. Honicke;R. Buhrer;A. Newrzella
  8. J. Catal. v.5 N. S. Butt;A. Fish
  9. Chem.-Ing.-Tech. v.59 D. Honicke;K. Griesbaum;R. Augenstein;Y. Yang
  10. Appl. Catal. v.2 D. Honicke;K. Griesbaum
  11. J. of Gas Chromatography v.4 R. G. Ackman
  12. J. of Gas Chromatography v.6 R. G. Ackman
  13. Appl. Catal. v.32 G. Centi;M. Burattini;F. Trifiro
  14. Appl. Catal. v.31 R. Y. Saleh;I. E. Wachs
  15. J. Catal. v.5 N. S. Butt;A. Fish
  16. Appl. Catal. A v.87 M. Miura;K. Schultheis;K. Griesbaum
  17. J. Phys. Chem. v.94 G. Centi;G. Golinelli;G. Busca
  18. Appl. Catal. v.46 G. Centi;J. L. Nieto;C. Lapalucci;K. Bruckmann;E. M. Serwicka
  19. Kinetics, and Catalysis v.14 F. Weiss;J. Marion;J. Metzger;J.-M. Cognion
  20. J. Chem. Soc., Chem. Commun. I. Iovel;Y. Goldberg;M. Shymanska
  21. Bull. Chem. Soc. Jpn. v.48 T. Izumi;A. Kasahara
  22. Ph. D. Dissertation, Karlsruhe Univ. M. Kamel