Numerical Modeling for Systematization of Line Heating Process

  • Published : 1996.05.01


Sculptured surface structures such as ship hulls are traditionally formed up to the required double curved shape by line heating method. The nature of the line heating process is a transient thermal process, followed by a thermo-elastic-plastic stress field. The permanant shape is dependent on many factors involved in the process, Among them are torch speed and path, supplied heat type and amount , and plate size. Thus, the work is essentially leaded by experts with lots of experiences. However, in order to effectively improve productivity through automation, each factor should be clearly examined how much it affects the final shape. This can not be done only by experiments, but can be achieved by a mechanics-based approach. In this paper, we propose a conceptual configuration for plate forming system, and then present simulations of the line heating process with numerical data in practices and suggest a computerized process of the line heating for practical applications. The modeling of heating torch, water cooling, and the plate to be formed is proposed for the finite element analysis after the mechanics of line heating is studied. Parametric studies are given and discussed for the effects of plate thickness, torch speed and initial curvature in forming a saddle typed surface.